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a b s t r a c t

A non-linear vibration equation with the consideration of large amplitude, gas damping and excitation is
developed to investigate the dynamic performance of a dielectric elastomer (DE)-based microbeam
resonator. Approximate analytical solution for the vibration equation is obtained by applying para-
meterized perturbation method (PPM) and introducing a detuning variable. The analysis exhibits that
active tuning of the resonant frequency of the resonator can be achieved through changing an applied
electrical voltage. It is observed that increasing amplitude will increase the natural frequency while it
will decrease the quality factor of the resonator. In addition, it is found that the initial pre-stretching
stress and the ambient pressure can significantly alter the resonant frequency of the resonator. The
analysis is envisaged to provide qualitative predictions and guidelines for design and application of DE-
based micro resonators with large vibration amplitude.

& 2014 Published by Elsevier Ltd.

1. Introduction

Driven by its broad spectrum of potential applications, dielec-
tric elastomer (DE), an emerging electroactive material capable of
producing large deformation [1,2], has been extensive explored
during the past decades. Except the capability of large deforma-
tion, DE also possesses an excellent combination of flexibility, low
cost, and chemical and biological compatibility, which makes DE a
promising material candidate for artificial muscles, energy har-
vesters, soft robots, programmable haptic surfaces and resonators
[2–5]. As material for micro resonators, DE has been considered as
a more efficient and superior alternative compared to conven-
tional materials, such as silicon, due to the capability of active
tuning of resonant frequency after fabrication without adding
extra exterior components [6–8]. The typical structure of a DE-
based resonator usually consists of a thin layer of pre-stretched DE
membrane sandwiched between two facing electrodes. When a
static electrical voltage is applied between the two electrodes, an
electrostatic compression is generated altering the resonant fre-
quency by relaxing the tension of the sandwiched DE structure.

The unique attributes of DE as mentioned have been drawing
great interests in using DEs as materials for resonators recently.
For example, Dubois et al. [9] experimentally demonstrated the
feasibility of frequency tuning of a circular membrane resonator
made of polydimethylsiloxane (PDMS) elastomer. By studying the
time response of a spherical membrane resonator, Mockensturm
and Goulbourne [10] found that the performance of the membrane
could be controlled by applying an electrostatic pressure. Zhu et al.
[11] analyzed the oscillation of a spherical DE membrane resonator
under harmonic, subharmonic and superharmonic resonance and
exhibited the ability of frequency tuning. Zhang et al. [8] success-
fully fabricated a microbeam resonator with polymer structure
and their experimental investigation showed that the ambient
pressure significantly decreased the quality factor (Q-factor) of the
resonator. By establishing a governing equation with considering
squeeze-film damping, Feng et al. [12] investigated the dynamic
performance of a DE-based micro-beam resonator under small
amplitude vibration. Recently, Li et al. [13] studied the dynamic
response and the stability of a DE resonator and presented that the
pre-stretch and the applied voltage could tune the dynamic
behavior of the resonators. Besides, there are some other works
focusing on stability analysis [14–16]. Although efforts have been
devoted to studying DE-based resonators, most of the previous
studies were focused on oscillation with small amplitude. Never-
theless, one of the favorable attributes of DEs over other material
candidates is large deformation, which can be activated by
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applying periodic electrical voltage. It has been reported that
periodic voltage can induce strain in DE structures from a linear
strain of 4% to over 100% [1,16,17]. For applications of DE-based
resonators aiming at large deformation, it is natural to investigate
the large amplitude effects upon the dynamic performance of the
devices whereas limited work has been found on such the effects.
Owning the benefit of large deformation, DE-based devices are
susceptible to instability [14,18]. Fortunately, it has been suggested
that the instability could be avoided by spaying charges on the DE
membrane [15,19]. Therefore, in this current work the large
deformation effects will be studied without involving any possi-
bility of instability.

As demonstrated by Zhang et al. [8] gas damping can influence
the performance of the resonator, i.e., the Q-factor decreases
significantly with the increase of the ambient pressure. Even
though micro devices are usually sealed in gas-evacuated cavities
to reduce gas damping, it was commented by Yasumura et al. [20]
and Ho and Tai [21] that gas damping for micro devices cannot be
neglected when the ambient pressure is above 10�6 atm. There-
fore, the consideration of gas damping under large amplitude
vibration is necessary and essential for accurate prediction on the
dynamic performance of DE-base resonators in non-vacuum
cavity.

In this current work, based on a typical configuration of the DE-
based resonator fabricated by Zhang et al. [8] (shown in Fig. 1), a
non-linear governing equation is established to study the dynamic
performance of the resonator. Parameterized perturbation method
(PPM) and a detuning variable are introduced to obtain an
approximate analytical solution of the governing equation. Then
the analytical results are compared to numerical results and
existing linear results [12] to validate the approaches and observed
the large amplitude effects.

2. Governing equations

Compared to small amplitude vibration, when the beam in
Fig. 1 vibrates with large amplitude, the midplane of the beamwill
be elongated instead of remaining un-stretched. The elongation
will alter the effective rigidity of the beam and influence the
vibration behavior of the resonator correspondingly. In addition,
the gas damping involved in this current work will not only
depends on the dimensions of the structure and the properties
of the gas as that for small amplitude vibration [12], but also will
depend on the vibration amplitude. Therefore, the gas damping
under large amplitude vibration needs to be evaluated.

2.1. Non-linear vibration equation

When the double-clamped beam in Fig. 1 is subjected to an
external load i.e., q(x,t), the beam with length, width and height
being l, b and d, respectively, will deflect laterally. Fig. 2 shows the
deformation of a differential element of the beam.

Under steady-state oscillation, the equilibrium equation of
forces for the differential element in the vertical direction is

QSþqðx; tÞdx�ðQ SþdQSÞþρA
∂2w
∂t2

dx¼ 0 ð1Þ

where QS is the shear force; ρ is the density of the beam; A¼bd is
the area of the beam cross section; w is the displacement in the
vertical direction and t is time. Furthermore, the balance of
bending moments yields

MþdMþ1
2
qðx; tÞðdxÞ2þQ SdxþNdw�M¼ 0 ð2Þ

where M is the bending moment and N is the axial force along the
horizontal direction. Combining Eqs. (1) and (2) and neglecting the
higher order of the infinitesimal term, we can have the following
vibration equation:

EI
∂4w
∂x4

�N
∂2w
∂x2

þρA
∂2w
∂t2

�qðx; tÞ ¼ 0 ð3Þ

with boundary conditions

wð0; tÞ ¼wðl; tÞ ¼ 0;
∂wð0; tÞ

∂x
¼ ∂wðl; tÞ

∂x
¼ 0 ð4Þ

where E is the Young's modulus of the beam and I¼bd3/12 is the
second moment of the beam cross section. For forced vibration, q
(x,t) in vibration Eq. (3) can be written as q(x,t)¼qdþqe with qd and
qe denoting the damping and the excitation forces loaded on unit
length of the beam, respectively. Here it should be noted that
except the axial forces considered for small amplitude [12], the
axial force N in Eq. (3) for large amplitude needs to incorporate the
force induced by elongation of the beam midplane. From Fig. 2
showing the deformation, the elongation of the midplane for the
differential element is

e¼ ds�dx¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ∂w

∂x

� �2

þ ∂w
∂x

� �2
s

�1

0
@

1
Adx ð5Þ

where ds is the length of the element after deformation. By
integrating the expansion of Eq. (5) over the beam length and
neglecting the higher order of the infinitesimal term, the elonga-
tion of the midplane of the beam is derived as

Δ¼wðlÞ�wð0Þþ1
2

Z l

0

∂w
∂x

� �2

dx ð6Þ

where w(0) and w(l) are the transverse displacements of the two
ends of the beam, particularly w(0)¼w(l)¼0 for a double-clamped
beam. Accordingly, the axial force N in Eq. (3) for large deforma-
tion is

N¼ s0�ε0εr
V2

d2
þEΔ

l

 !
A ð7Þ

where s0 is the initial pre-stretching stress; ε0 and εr are the
dielectric permittivity of vacuum and the relative dielectric per-
mittivity of the elastomer, respectively, and V is the applied static
voltage across the beam.
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66 Fig. 1. Schematic demonstration of a double-clamped microbeamwith deformation.

Fig. 2. Schematic demonstration of deformation of a differential element.
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