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a b s t r a c t

Non-linear bending analysis of tapered functionally graded (FG) beam subjected to thermal and
mechanical load with general boundary condition is studied. The governing equations are derived and
a discussion is made about the possibility of obtaining analytical solution. In the case of no axial force
along the beam, a closed form solution is presented for the problem. For the general case with axial
force, the Galerkin technique is employed to overcome the shortcoming of the analytical solution.
Moreover, the Generalized Differential Quadrature (GDQ) method is also implemented to discretize and
solve the governing equations in the general form and validate the results obtained from two other
methods. The effects of various thermal and mechanical loading on the nonlinear bending of tapered FG
beam are investigated by implementing different analytical and numerical approaches.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Developments in materials engineering resulted in a new type
of materials with smooth and continuous variation of thermo-
mechanical properties which are known as functionally graded
materials (FGMs). FGMs possess various advantages over conven-
tional composite laminates, such as reduction in thermal residual
stresses and stress concentrations which may enhance effective-
ness of the materials. FGMs are expected to be used in the design
of many engineering structures such as dental and orthopedic
implants, plasma facing bio materials, sensors, lightweight armor
materials with high ballistic efficiency [1,2].

Furthermore, due to huge application of beams in different
engineering fields, it is necessary to study their static and dynamic
behavior both at small and large amplitudes where the latter is
governed by nonlinear equations, see [3–6]. Also, recently, many
researches were carried out to study nonlinear behavior of FG
beams with constant cross section, see for instance [7–12]. Kang
and Li [13,14] analyzed large deflection behavior of cantilever
functionally graded beam subjected to an end force and end
moment using numerical methods. Almeida et al. [15] applied
tailored Lagrangian formulation for geometric nonlinear analysis
of functionally graded beams with constant cross section.

On the other hand, studies related to the nonlinear analysis of
variable cross section FG beams are limited to a few works. Shahba
et al. [16] studied free vibration and stability of axially functionally
graded tapered Timoshenko beams with classical and non-classical
boundary conditions using finite element analysis. Rajasekaran [17]
investigated the free vibration of axially functionally graded tapered
Timoshenko beam which is centrifugally stiffened using the differ-
ential quadrature element method. A more general study on free
vibration of axially functionally graded beams with non-uniform
cross-section was carried out by Hein and Feklistova [18]. They used
Haar wavelets to calculate natural frequencies. Rajasekaran [19]
studied the buckling behavior of non-uniform functionally graded
beam implementing differential transformation based dynamic
stiffness approach. Large deflection analysis of tapered functionally
graded beams was done by Davoodinik and Rahimi [20] in which a
semi-analytical solution was presented for a particular case of
cantilever beam with no axial force and a concentrated load at
the end. Nguyen [21] and Nguyen and Gan [22] analyzed the large
deflection behavior of tapered functionally graded beam with
different types of inhomegenities by applying finite element analy-
sis which is again restricted to cantilever beam.

It is also worthy to mention that analytical solutions are always
preferable to the numerical approaches as the effects of various
physical parameters can be studied in an easier way by analytical
solutions. Moreover, presenting closed form solutions for non-
linear differential equations with variable coefficients would be a
difficult task.

In this paper, an analytical solution is presented for nonlinear
bending analysis of tapered functionally graded beams with arbitrary
boundary conditions subjected to thermal and mechanical loading.
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The presented closed form solution is related to the case of beams
with no axial force which appears when one of the edges is axially
movable. Moreover, using Galerkin technique, a general solution is
also obtained for the case of non-movable edges and the results are
validated through comparison with Generalized Differential Quad-
rature (GDQ) technique.

2. Governing equations

Consider a tapered FG beam with rectangular cross section
defined in Cartesian coordinate with length L in the x direction,
width b in the y direction and variable thickness 2h(x) in the z
direction as shown in Fig. 1. Linear variation is considered for the
thickness of the beam as

h¼ a1xþa2 ð1Þ
where a1 and a2 are the taper ratio and half of the base thickness
(t0 ¼ 2a2), respectively. It is worthy to mention that the value of a1
must be in a reasonable range, i.e. 0oa1o tan 61, in order to
achieve consistency between geometry of the beam and modeling
theory. The beam is subjected to a transverse uniform load q and a
thermal load caused by a uniform temperature gradient ΔT .

The material properties are considered functionally graded through
the beam thickness. In the literature, various types of functions are
used to describe how the material properties of FGM changes. In this
paper, an exponential function is used to describe variation of the
material properties through the thickness of the beam. Apart from
Poisson's ratio (ν) which is considered to be constant, other material
properties of the beam such as Young modulus (E) and the thermal
expansion coefficient (α) are considered as [23]

EðzÞ ¼ AEeBE ðzþhÞ ð2aÞ

αðzÞ ¼ AαeBαðzþhÞ ð2bÞ
in which, AE , Aα , BE and Bα are defined as

AE ¼ Ec ð3aÞ

Aα ¼ αc ð3bÞ

BE ¼
1
2h

ln
Em
Ec

� �
ð3cÞ

Bα ¼ 1
2h

ln
αm

αc

� �
ð3dÞ

where subscriptsm and c refer to metallic and ceramic constituents of
FG material, respectively. According to the classical beam theory (CBT)
the nonlinear strain field which presents large deflection in the
Cartesian coordinate system, is written as

ε¼ ∂u
∂x

�z
∂2w
∂x2

þ1
2

∂w
∂x

� �2

þεth ð4Þ

in which u and w are axial and transverse displacement of the beam,
respectively and εth is thermal strain. Defining the force resultant, Nx,

and moment resultant, Mx, per unit length as

ðNx; MxÞ ¼ b
Z h=2

�h=2
ð1; zÞsxxðzÞdz ð5Þ

and applying generalized Hooke's law, one may obtain Nx and Mx as

Nx ¼ A11
du
dx

þ1
2

dw
dx

� �2
 !

þB11
d2w
dx2

þNth ð6aÞ

Mx ¼ B11
du
dx

þ1
2

dw
dx

� �2
 !

þD11
d2w
dx2

þMth ð6bÞ

Nth and Mth are resultant thermal force and moment per unit length,
respectively, which are defined as

ðNth; MthÞ ¼ b∬ ð1; zÞ EðzÞ
1�υ2

αðzÞΔT dA ð7Þ

And the other parameters A11, B11 and D11 are defined as

ðA11;B11;D11Þ ¼ b∬
EðzÞ
1�υ2

ð1; z; z2ÞdA ð8Þ

Integrating Eqs. (7) and (8) for the previously defined tapered
FG beam, one can rewrite A11, B11 and D11, Nth and Mth as

A11 ¼ CA11hðxÞ ð9aÞ

B11 ¼ CB11hðxÞ2 ð9bÞ

D11 ¼ CD11hðxÞ3 ð9cÞ

Nth ¼ CNth
hðxÞ ð9dÞ

Mth ¼ CMth
hðxÞ2 ð9eÞ

where the constants CA11
, CB11 , CD11 , CNth

and CMth
are defined in

Appendix A.
Using the energy principle and CBT, one can derive the

equilibrium equations as

dNx

dx
¼ 0 ð10aÞ

d2Mx

dx2
�Nx

d2w
dx2

¼ q ð10bÞ

From (10a), it can be concluded that Nx is constant and
therefore can be considered as

Nx ¼ K ð11Þ

where K is the unknown constant axial force in the beam to be
determined. Substituting Eq. (11) into (6a) leads to

du
dx

þ1
2

dw
dx

� �2

¼ 1
A11

K�B11
d2w
dx2

�Nth

 !
ð12Þ

Based on (12), bending moment of the beam can be determined as

Mx ¼
B11

A11
K�B11

d2w
dx2

�Nth

 !
þD11

d2w
dx2

þMth ð13Þ

Substitution of the constants defined in (9a)–(9e) into (13)
leads to

Mx ¼ h3 d
2w
dx2

CD11 �
C2
B11

CA11

 !
þh2 CMth

�CB11CNth

CA11

� �
þh

KCB11

CA11

ð14Þ

Fig. 1. Tapered beam in the Cartesian coordinate system.
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