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a b s t r a c t

In this paper, we have used the Lie group of transformations and obtained the whole range of self-similar
solutions to the problem of propagation of shock waves through a non-ideal, dusty gas. The conditions
essential for the existence of similarity solutions for a strong shock are discussed. The problem of
imploding (converging) shock wave is also worked out and the effects of the mass concentration of the
dust particles, ratio of the density of solid particles to that of initial density of the medium, the relative
specific heat and the effect of the non-ideal parameter, on the shock formation has been studied in
detail.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Lie group of transformations has been widely used to study the
continuous symmetry in mathematics, theoretical physics and
mechanics. It helps in simplifying the complicated problems of
the physical system into solvable mathematical equations. The
expanded Lie Group of transformations of partial differential
equations means a continuous group of transformations, which
act on the expanded space of variables and includes the equation
parameters along with independent and dependent variables.
Latest works on Lie groups and its applications in various fields
can be found in [1–4]. Radha and Sharma [5] have used the Lie
group of transformation method described in the said works and
obtained the entire class of self-similar solutions for converging
shocks in a relaxing gas. This method helps us to identify the
medium for which the problem is invariant and admits self-similar
solutions. Ames and Donato studied the evolution of weak
discontinuities in a state characterized by invariant solutions [6]
and Donato studied the similarity solutions and strong shocks in
extended thermodynamics of rarefied gas [7]. Oliveri and Speciale
used Lie group analysis to find exact solutions to the unsteady
equations of perfect gases in [8] and exact solutions to the ideal
magnetogasdynamics equations in [9]. The Lie group of transfor-
mation method was used to study the shock wave propagation
through a dusty gas mixture obeying the equation of state of Mie-
Gruneisen type in [10], solution of system of equations describing
viscoelastic materials [11], interaction of a weak discontinuity

wave with a bore in shallow water [12], interaction of discontin-
uous waves in a relaxing gas [13], self-similar shocks in a gas with
dust particles [14] and self-similar solutions in a plasma with axial
magnetic field (θ -pinch) [15].

For the system of quasilinear hyperbolic partial differential
equations, it is hard, in general to determine a solution without
approximations. Here, we assume that there exists a solution of
the basic equations subject to the jump conditions along a set of
curves called the similarity curves, for which the system of partial
differential equations transforms to a set of ordinary differential
equations. In the self-similar motion the flow variables describing
the motion, i.e. velocity uðx; tÞ, density ρðx; tÞ, pressure pðx; tÞ, etc.
do not depend upon the x coordinate and time coordinate t
separately but are functions only of their combination. (see [16]).
Self-similar solutions are of two types. For the solutions of the first
type the similarity exponent δ is determined either by dimensional
considerations or from the conservation laws, and in the self-
similar problems of the second type, the exponent δ cannot be
found from the same without solving the equations. In such a
situation the similarity exponent is determined by integrating the
ordinary differential equations for the reduced functions (see [17]).
Our present work is concerned with self-similar solutions of
second type.

We consider a system of partial differential equations describ-
ing the one dimensional unsteady plane and radially symmetric
flow of an inviscid gas with dust particles. It is assumed that
the gas consists of a non-ideal gas and small solid particles.
The present work is concerned with the cases when the mass
concentration of the particles is generally same as that of the gas.
The volume occupied by the particles is negligible because the
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density of the solid particles is much larger than that of the gas.
The constants occurring in the expressions for the generators of
the local Lie group of transformations are responsible for the
different cases of possible solutions like power law, exponential or
logarithmic shock paths. A particular case of the collapse of an
imploding shock is studied for radially symmetric flows. For the
flow variables which are unique to the medium, the self-similar
exponent is determined using the assumption that solution of the
system of ordinary differential equations which represent the self-
similar motion is regular on a regular characteristic passing
through the center (axis) of implosion. Numerical calculations
have been carried out to determine the values of the self-similarity
exponent and the profiles of the flow variables behind the shock;
the values of the similarity exponent so obtained agree with those
obtained using characteristic rule [10]. The influences of dust
particles and Van der Waals excluded volume on the shock wave
and the flow parameters behind the shock are studied.

2. Basic equations

The basic equations are based on account of the following
assumptions (see [18–21]) (i) the gas is non-ideal and the specific
heats are constant, (ii) the particles are spherical, of uniform size,
incompressible and occupy less than 5% of the total volume, their
specific heat is constant and the temperature is uniform within
each particle, interaction between particles of different sizes is not
considered, (iii) the flow is taken to be one dimensional, (iv) the
particles are uniformly distributed over the cross section of the
duct, and size and average spacing of the particles are small
compared with the cross-sectional dimensions of the duct,
(v) heat transfer and boundary layer effects with the duct walls
are not considered, (vi) the effect of the particles on the gas
appears at first in the wake of the particles and is then distributed
over the rest of the gas by mixing, (vii) the pressure id not affected
by the particles, (viii) external forces are not applied on the
mixture, (ix) no mass transfer takes place between the two phases.
The system equations that represent a planar (m¼0), cylindrically
symmetric (m¼1) or a spherically symmetric (m¼2) motion of a
non-ideal gas with dust particles is given by [24]
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where u is the particle velocity along x-axis, t the time, ρ the
density, p the pressure and Em is the internal energy per unit mass
of the mixture which is given by

Em ¼ ð1�ZÞð1� ~bρÞp
ðΓ�1Þρ : ð2Þ

Here, Z ¼ Vsp=Vg is the volume fraction and kp ¼msp=mg is the
mass fraction of the solid particles in the mixture where msp and
Vsp are the total mass and volumetric extension of the solid
particles and Vg and mg are the total volume and total mass of
the mixture; ~b ¼ bð1�kpÞ where b is the Van der Waals excluded
volume and lies in the range 0:9� 10�3rbr1:1� 10�3 [23]; the
Grüneisen coefficient Γ ¼ γð1þλβÞ=ð1þλβγÞ, λ¼ kp=ð1�kpÞ,
β¼ csp=cp, γ ¼ cp=cv where csp is the specific heat of solid particles,
cp the specific heat of the gas at constant pressure, and cv the
specific heat of the gas at constant volume. The entities Z and kp
are related via the expression Z ¼ θρ, where θ¼ kp=ρsp, with ρsp as
the species density of the solid particles. We introduce the variable
G¼ ρsp=ρg , i.e. the ratio of the density of the solid particles to the

species density of the gas, with respect to which the variations of
the flow variables will be calculated and compared. The equation
of state are given by

p¼ ð1�kpÞ
ð1�ZÞð1� ~bρÞ

ρRT ; ð3Þ

where T is the temperature of the gas and that of the solid
particles and R is the specific gas constant.

Using Eq. (3) and neglecting Oðb2Þ terms, Eq. (1)3 can be written
as
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where

C ¼ ðΓ�α2ρ
2Þp

ð1�α1ρþα2ρ2Þρ

� �1=2

; ð5Þ

is the equilibrium speed of sound in the mixture with α1 ¼ θþ ~b,
α2 ¼ θ ~b.

Depending upon the presence of the parameters θ and (or) b,
the following cases can arise.

Case 1: If θ¼0 and b¼0 then Γ ¼ γ, C2 ¼ γp=ρ and the mixture
becomes an ideal gas (ideal in the sense that the particle
interactions are absent).

Case 2: If θ¼0, ba0 , then Γ ¼ γ, C2 ¼ γp=ρð1� ~bρÞ and the
mixture is a non-ideal (the Van der Waal) gas.

Case 3: If θa0, b¼0, then C2 ¼ Γp=ρð1�θρÞ and the case is a
mixture of an ideal gas with dust particles.

Case 4: If θa0, ba0, then C is given by (5) and the case is a
mixture of a non-ideal (Van der Waals) gas with dust
particles.

If the system of equations are written in the conservation form

Gtðx; t;UÞþFxðx; t;UÞ ¼Hðx; t;UÞ; ð6Þ
where G and F and H are column vectors having n components,
then the Rankine–Hugoniot equations for shock waves are given
by

j½Gi�jV ¼ j½Fi�j; i¼ 1;2;…n ð7Þ
where V is the shock velocity. Here, j½X�j ¼ X�X0 is the jump in the
variable X, where the variables in the medium ahead of the shock
are referred by the subscript 0 and the medium behind the shock
are without any subscript.

In the conservation form (6) Eqs. (1)1,2 and (4) can be written
with following forms of G, F and H

G¼ ρ; ρu;
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It is assumed that the shock front x¼ χðtÞ, is moving with the
velocity V ¼ _χ ðtÞ into the inhomogeneous medium given by u0 ¼ 0 ,
p0 ¼ constant and ρ0 ¼ ρ0ðxÞ. From the Rankine–Hugoniot jump
conditions (7) and the conservation form (6), it has been observed
that the density ρ across the shock front satisfy the following
equation:

ρ0V
2 1�ρ0

ρ

� �
ðΓ�1Þρ�ðΓþ1Þρ0þ2α1ρρ0�2α2ρ0ρ

2� �
þ2p0fρðΓ�α1ρ0þα2ρ

2
0Þ�ρ0ðΓ�α1ρþα2ρ

2Þg ¼ 0: ð9Þ
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