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a b s t r a c t

In helicopters with hinged blades an unstable dynamical phenomenon known as ground resonance may
occur during take-off and landing and lead to the total destruction of the aircraft. Predicting the
phenomenon is necessary to determine the stability of periodical equations of motion. The instability
boundaries can be easily obtained for isotropic rotor configurations through multi-blade coordinate
transformation once the periodic terms are eliminated. However, Floquet's theory is commonly used to
treat the periodic motion equations when introducing the asymmetric effects of spring or damper aging
or rotor rupture (anisotropic rotors). In additional, it is known that when treated as parametric
excitations, periodic terms may lead to instability in dynamical systems under parametric resonances.
In this paper a helicopter in contact with the ground is considered as a parametrically excited system and
the equations are treated analytically by applying the method of multiple scales (MMS). A stability
analysis verifies the existence of parametric instabilities by first order sets of equations for an isotropic
rotor configuration. The results are compared and validated with those obtained by using Floquet's
Theory. Moreover, the amplitude responses of the aircraft at equilibrium in the remaining resonant cases
are studied. The results are then compared with those obtained from the time response analysis.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

An unstable phenomenon in helicopter dynamics known as
ground resonance consists of a self-excited oscillation caused by
the interaction between rotor blade oscillations and other forms of
movement in the helicopter [1]. Several accidents have been
recorded that have shown that, under certain conditions, the
phenomenon can be very violent and lead to the total destruction
of the aircraft.

The earliest research into the phenomenon was performed by
Coleman and Feingold [2] who laid the foundations for all
subsequent studies into the problem. Donham et al. [3] and
Lytwyn et al. [4] added the air resonance effect and verified its
influence on the phenomenon. Major contributions towards
understanding the phenomenon of ground resonance in hingeless
and bearingless rotors were made by army researchers, such as
Hodges [5]. Recently, Kunz [6] analyzed the influence of non-linear
springs and dampers (elastomeric elements) for predicting the

rotor instability zone while Byers and Gandhi [7] explored how the
problem might be controlled passively.

The investigations mentioned above demonstrated that the
occurrences of ground resonance can be accurately predicted for
articulated, hingeless and bearingless rotors. The use of linearized
equations of motion provides very accurate frequency prediction.

These works all focused on analyzing isotropic rotor configura-
tions (all blades having the same properties). The boundary speeds
of ground resonance are easily obtained once the periodic terms
are eliminated through a variable transformation known as the
Coleman Transformation or, more generally, as the multi-blade
coordinate transformation [8].

Nevertheless, the case of anisotropic rotors is very interesting
from the practical point of view. Indeed, due to aging, damper and
stiffness properties can change from one blade to another. Conse-
quently, as the Coleman Transformation can no longer be applied
to such anisotropic rotors, the periodical equations of motion are
subjected to a stability analysis.

In a recent study on helicopter dynamics, and more specifically
on the ground resonance phenomenon, Sanches et al. [9], retained
the periodic terms in the equations of motion. Using Floquet's
Method the instability zones predicted were similar to those
Coleman and Feingold predicted for an isotropic rotor.
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In previous studies the anisotropic rotor was treated by using
Floquet's Theory [10,11]. Since the stability analysis is performed
through the monodromy matrix and calculated for each combina-
tion of input parameters, the current method is expensive in terms
of computer time.

Analytical mathematical methods have already been developed
and dedicated to calculating differential equations with periodical
coefficients. Moreover, once the analytical responses are deter-
mined, the boundaries of instabilities can easily be obtained for
any type of rotor configuration. Among these methods mention
can be made of [12,13]: Hill's Infinite Determinant, Harmonic
Balance Method and Method of Multiple Scales.

The latter method has been frequently applied to periodic,
parametric and non-linear problems in industry [14] and in
rotating dynamic systems [15–17].

Classic examples of parametrically excited systems (i.e., pendulum
dynamics over a parametrically excited base and the oscillatory
motion of a string under harmonic axial forces) show that the system
is dynamically unstable under parametrical resonance conditions [18].

The present work therefore considers the system as a parame-
trically excited system and treats it by using the Method of Multiple
Scales. The boundaries of the ground resonance phenomenon are
obtained by a stability analysis for an isotropic rotor configuration.
The results are compared with those obtained by using Floquet's
Theory. Then, analysis of the amplitude response of the helicopter is
carried out on the remaining parametric resonances.

In Section 2, the dynamical equations of motion from the mechan-
ical model are formulated by neglecting the aerodynamic forces and
no viscous damping is taking into account. In Sections 3 and 4, the
methodologies applied to the set of periodic motion equations, i.e. the
Floquet's Method (FM) and the Method of Multiple Scales (MMS), are
described. In Section 5, the critical rotor speeds predicted by both
methods are presented and compared for an isotropic rotor config-
uration. A description is also given of the development of the
amplitude responses analysis and the results, while Section 6 presents
the conclusions.

2. Mechanical model

The mechanical model used is similar to that proposed by
Coleman and Feingold and is developed to characterize the
dynamical behavior of a helicopter with a hinged rotor. In other
words, it consists of figuring out the relation between the long-
itudinal and lateral displacement – x(t) and y(t) – of the fuselage
and the kth blade lag angle – φðtÞ – in terms of rotor speed Ω and
time t. Fig. 1 provides a general diagram of the system.

The fuselage is considered as a rigid body with its center of
gravity at point O. At the outset or initial time, the origin of an
inertial coordinate system ðX0; Y0; Z0Þ is coincident at this point.
The body is connected to springs that represent the flexibility of
the landing skid. The rotor head system consists of an assembly of
one rigid rotor hub with Nb blades. Each blade is represented by a
damped mass located at a distance b from the lag articulation
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Nomenclature

Symbol description, units
a rotor eccentricity, m
b blade center of giration, m
[c.c] complex conjugate terms
Dp
n ∂p=∂Tp

n – partial derivative with respect to time scales
Fext external force vector
G damping matrix of the dynamical system
i complex number
IZbk lag rotational inertia of the kth blade around its center

of gravity, kg m2

K stiffness matrix of the dynamical system
Kbk kth blade lead-lag stiffness, N m rad�1

Kf X ; Kf Y longitudinal and transversal stiffness of fuselage,
N m�1

mf ; mbk fuselage and mass of kth blade, kg
M mass matrix of the dynamical system
Nb number of blades in the rotor
PðΓ;sÞ characteristic polynomial equation of 4th degree in
rak

ffiffiffiffiffiffiffiffiffi
arbk

p
rbk ratio between the static moment over the total lead-

lag rotational inertia of the kth blade, m�1

rmk ratio between the static moment of the kth blade over
the total mass of the helicopter, m

S state space matrix

t time, s
T0; T1 time scales, s
u general variables
V state variables
xðtÞ; yðtÞ longitudinal and transversal displacement of the

fuselage, m
xbx; ybx blade position in x and y directions, m
ðx; y; zÞ mobile coordinate system attached to the rotor hub
ðX0; Y0; Z0Þ inertial referential system

Greek Letters

α, β given by the relation in
ϵ bookkeeping parameter
φkðtÞ lead–lag angle of kth blade, rad
Φ transition matrix (Floquet's Theory)
Γ solutions of the characteristic polynomial equation
λ characteristic exponents
Ω rotor speed, rad s�1

s frequency detuning parameter, rad s�1

ζk azimuth angle for the kth blade, rad
ω1…6 the six general natural frequencies of Eq. (14), rad s�1

ωbk lag resonance frequency of the kth blade at, rad s�1

ωx; ωy fuselage resonance frequencies in x and y directions,
rad s�1

Fig. 1. Diagram of the mechanical system.
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