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a b s t r a c t

Non-linear dynamics of a bouncing ball moving vertically in a gravitational field and colliding with a
moving limiter is considered. The Poincaré map, describing evolution from an impact to the next impact,
is used to analyse the original system. Sinusoidal displacement of the table, defining the standard model,
is approximated in one period of the limiter's motion by a cubic spline, thus making analytical
computations possible. Analytical and numerical results, based on Implicit Function Theorem, obtained
for this simplified model, are used to elucidate dynamics of the standard model of the bouncing ball.
Finally, the same techniques are applied to investigate dynamics of the standard model.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In the present paper we study dynamics of a ball moving
vertically in a gravitational field and impacting with a periodically
moving limiter (a table). This model belongs to the field of non-
smooth and non-linear dynamical systems [1–4]. In such systems
non-standard bifurcations such as border-collisions and grazing
impacts leading often to complex chaotic motions are typically
present. It is important that non-smooth systems have many
applications in technology [5–10].

Impacting systems studied in the literature can be divided into
three main classes: bouncing ball models [11–13], impacting
oscillators [14] and impacting pendulums [15,10], see also [1]. In
dynamics with impacts it is usually difficult or even impossible to
solve non-linear equation for an instant of the next impact. For
example, in the bouncing ball models the table's motion has been
usually assumed to be in a sinusoidal form, cf. [13] and references
therein. This choice of the limiter's motion leads indeed to a non-
tractable non-linear equation for time of the next impact. To tackle
this problem we proposed a sequence of models in which periodic
motion of the table is assumed (in one period of limiter's motion)
as a low-order polynomial of time [16]. It is thus possible to
approximate the sinusoidal motion of the table more and more
exactly and conduct analytical computations. Carrying out this
plan we have studied several such models with linear, quadratic
and cubic polynomials [17–20].

In the present work we conduct analytical and numerical
investigations of the model in which sinusoidal displacement of

the table is approximated in one period by four cubic polynomials.
We shall refer to this model as MC . The reason to use this
approximation is that it is much more exact than that used in
Ref. [20] and still allows analytical computations.

Simultaneously, we study the standard dynamics of bouncing ball
with sinusoidal motion of the limiter, referred to as MS. We are using
techniques based on the Implicit Function Theorem [21] which can be
applied to both models. It should be stressed that results obtained for
the model MS can be compared with experimental studies, see [22–
24] for the early papers, summarized in [25], and [26] for recent work.

The paper is organized as follows. In Section 2 a one dimensional
dynamics of a ball moving in a gravitational field and colliding with a
table is reviewed and the corresponding Poincaré map is described.
Two models of the limiter's motion MC and MS are next defined.
Bifurcation diagrams are computed for MC and MS. In Sections 3–6 a
combination of analytical and numerical approach is used to investi-
gate selected problems of dynamics in models MC and MS. More
exactly, birth of low velocity n-cycles is investigated in Section 3 and
birth of high velocity 3-cycles is studied in Section 4 for both models.
In Section 5 the case of N impacts in one interval of the limiter's
motion is studied for the model MC while in Section 6 we study
launching mechanism and mixing for the model MS. We summarize
our results in the last section.

2. Bouncing ball: a simple motion of the table

Let a ball moves vertically in a constant gravitational field and
collides with a periodically moving table. We treat the ball as a
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material point (this condition has been relaxed in [27]) and
assume that the limiter's mass is so large that its motion is not
affected at impacts. Dynamics of the ball from an impact to the
next impact can be described by the following Poincaré map in a
non-dimensional form [28] (see also Ref. [12] where analogous
map was derived earlier and Ref. [13] for generalizations of the
bouncing ball model):

γYðTiþ1Þ ¼ γYðTiÞ�Δ2
iþ1þΔiþ1Vi; ð1aÞ

Viþ1 ¼ �RViþ2RΔiþ1þγð1þRÞ _Y ðTiþ1Þ; ð1bÞ
where Ti denotes the time of the i-th impact and Vi is the
corresponding post-impact velocity while Δiþ1 � Tiþ1�Ti. The
parameters γ and R are a non-dimensional acceleration and the
coefficient of restitution, 0rRo1 [5], respectively and the func-
tion YðTÞ represents the limiter's motion. The limiter's motion has
been typically assumed to be in the sinusoidal form, YSðTÞ ¼
sin ð2πTÞ. Eq. (1) and Y ¼ YS lead to the model MS. This choice
of limiter's motion leads to serious difficulties in solving the first of
(1) for Tiþ1, thus making analytical investigations of dynamics
hardly possible. Accordingly, we have decided to simplify the
limiter's periodic motion to make (1a) solvable. The function

YCðTÞ ¼

f 1ðTÞ; 0r T̂o1
4

f 2ðTÞ; 1
4 r T̂o1

2

f 3ðTÞ; 1
2 r T̂o3

4

f 4ðTÞ; 3
4 r T̂r1

8>>>>><
>>>>>:

ð2Þ

f 1ðTÞ ¼ ð32π�128ÞT̂ 3þð�16πþ48ÞT̂ 2þ2πT̂ ð3aÞ

f 2ðTÞ ¼ ð128�32πÞT̂ 3þð�144þ32πÞT̂ 2þð48�10πÞT̂ �4þπ ð3bÞ

f 3ðTÞ ¼ ð128�32πÞT̂ 3þð�240þ64πÞT̂ 2þð144�42πÞT̂ �28þ9π
ð3cÞ

f 4ðTÞ ¼ ð32π�128ÞT̂ 3þð336�80πÞT̂ 2þð�288þ66πÞT̂ þ80�18π

ð3dÞ
approximates YS ¼ sin ð2πTÞ on the intervals ½k; kþ1�, k¼0,1,…,
with T̂ ¼ T�⌊Tc, where ⌊xc is the floor function – the largest
integer less than or equal to x. The model MC consists of Eqs. (1),
(2), and (3) with control parameters R and γ. We shall also need
velocities of the limiter, defined as giðTÞ ¼

df ðd=dtÞf iðTÞ, i¼1,…,4.

Comparison of Figs. 2 and 3 from Ref. [16] shows that this
approximation is much better that one cubic polynomial approx-
imation investigated in Ref. [20].

In Fig. 1 we show the bifurcation diagram with velocities after
impacts versus γ computed for growing γ and R¼0.85. It follows
that dynamical system MC has several classes of attractors: fixed
points period-doubling to chaos, small velocity k-cycles, high-
velocity 3-cycles and some other attractors including grazing
manifold (not shown in the figure). We shall investigate some of
these attractors in the next sections combining analytical and
numerical approaches (general analytical conditions for birth of
new modes of motion were given in [29]).

In Fig. 2 the corresponding bifurcation diagram for the sinu-
soidal motion is shown. Similarity of Figs. 1 and 2 suggests that
analytical results obtained for the model MC will shed light on the
problem of sinusoidal motion, MS.

We realize finally that the approximation defined in Eqs.
(2) and (3) leads to significant improvement on one cubic poly-
nomial approximation, cf. Fig. 1 from Ref. [20] where the corre-
sponding bifurcation diagram is shown.

3. Birth of low velocity k-cycles

In this section we shall study birth of low velocity k-cycles which
can be seen in the bifurcation diagrams, Figs. 1 and 2, for γ40:03 and
Vo1. In the case of such cycles T1; T2;…; TkAð0;1Þ and
Tkþ1�1¼ T1. Of course, it is possible to follow periodic orbits
backwards, i.e. iterating the map (1) until the convergence to the k-
cycle is achieved for some initial condition and some γ. Then the value
of γ is decreased (slightly) and the map is iterated again (until
convergence is obtained) with the previously computed k-cycle as
the initial condition. This method although leads to the determination
of the critical value of γ at which the k-cycle disappears for decreasing
γ (or is born for growing γ) but is time-consuming and not very
effective due to very poor convergence near the threshold.

On the other hand, analytical conditions for birth of k-cycles are
found below. In what follows theorems about differentiation of
implicit functions [21] will turn out to be useful since Eq. (1a)
defines Tiþ1 implicitly. Consider equation

FðT1; T2Þ ¼ 0; ð4Þ
which defines dependence of, say, T2 on T1, see [21] where
necessary and sufficient assumptions are given. Then it follows
from implicit function theorem that

dT2

dT1
¼ �F 01

F 02
: ð5Þ

where F 01 � ∂F=∂T1, F
0
2 � ∂F=∂T2.

In a more complicated case, equations

FðT1; T2; T3Þ ¼ 0; GðT1; T2; T3Þ ¼ 0; ð6Þ
define T2 and T3 as functions of T1 under appropriate assumptions.
We can now compute derivatives with respect to T1 as [21]

∂T2

∂T1
¼ �

det
F 01 G0

1

F 03 G0
3

 !

det
F 02 G0

2

F 03 G0
3

 ! ;
∂T3

∂T1
¼ �

det
F 02 G0

2

F 01 G0
1

 !

det
F 02 G0

2

F 03 G0
3

 ! ; ð7Þ

with F 01 � ∂F=∂T1, F
0
2 � ∂F=∂T2, F

0
3 � ∂F=∂T3 and analogous notation

for G0
i, i¼1,2,3.

3.1. Low velocity 2-cycle in the model MC

Numerical tests show that a 2-cycle fulfilling conditions
T1Að0; 1

4 Þ; T2A ð12 ; 3
4 Þ and T3 ¼ T1þ1 is stable. This 2-cycle can

Fig. 1. Bifurcation diagram for the model MC , R¼0.85: velocities after impacts
versus control parameter γ.
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