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a b s t r a c t

The probability density function for transient response of non-linear stochastic system is investigated
through the stochastic averaging and Mellin transform. The stochastic averaging based on the general-
ized harmonic functions is adopted to reduce the system dimension and derive the one-dimensional Itô
stochastic differential equation with respect to amplitude response. To solve the Fokker–Plank–
Kolmogorov equation governing the amplitude response probability density, the Mellin transform is
first implemented to obtain the differential relation of complex fractional moments. Combining the
expansion form of transient probability density with respect to complex fractional moments and the
differential relations at different transform parameters yields a set of closed-form first-order ordinary
differential equations. The complex fractional moments which are determined by the solution of the
above equations can be used to directly construct the probability density function of system response.
Numerical results for a van der Pol oscillator subject to stochastically external and parametric excitations
are given to illustrate the application, the convergence and the precision of the proposed procedure.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Random response prediction of non-linear system is one of the
fundamental and important topics in stochastic dynamics. All the
statistical information of the system response can be derived by
the response probability density function, and so the establish of
response probability density is the ultimate target of random
response analysis. The analysis on the stationary probability
density functions of system responses is relatively easy and the
exact and approximate solutions have been widely studied [1–5].
The obtained stationary functions, however, can only give the
statistical information of stationary responses. The prediction of
transient probability density of random responses is a challenging
project due to its dependence on time.

Only for very special first-order non-linear systems, the exact
probability density of transient responses can be obtained [6–8].
Thus, some approximate methods, such as Monte Carlo simulation,
path integral approach, perturbation technique and Galerkin
method, have been developed for the general first-order and
second-order non-linear stochastic systems [2,9–11]. Monte Carlo
simulation directly handles the original equation and the benefit is

the versatility to system and excitation property, while the draw-
backs are the long computing time and high cost. Path integral
approach, perturbation technique and Galerkin method are
adopted to approximately solve the Fokker–Plank–Kolmogorov
(FPK) equation governing the transient response probability den-
sity. Path integral approach is also a numerical method. Although
both of perturbation technique and Galerkin method provide the
semi-analytical solution of the FPK equation, the former is
restricted to cases with weak non-linearity while the latter, in a
certain extent, breaks this restriction [12,13]. When using the
Galerkin method, the solution of FPK equation is approximately
expressed by a series in terms of a set of properly state-dependent
orthogonal basis functions with time-dependent coefficients
which are calculated by making the projection of the residual
error vanish on a proper set of independent functions. The
precision of the Galerkin method heavily relies on the selection
of the basis functions. In addition, the application of Galerkin
method to solve the FPK equation is mainly limited by the system
dimension. For high-dimensional system, it is quite difficult to
derive the semi-analytical result through this method. The com-
bined application of the stochastic averaging technique and the
FPK equation method is a powerful tool to investigate the system
response to random excitations, and the stochastic averaging is
used to reduce system dimension and derive lower-dimensional
FPK equation. Thus, the combination of stochastic averaging and
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Galerkin method can deal with systems of higher dimensions
[14–16].

Noted that in the fractional calculus in complex domain, Mellin
transform of the probability density function is linearly related to
complex fractional moment and a new expansion form of the
probability density function with respect to complex fractional
moments has been obtained [17,18]. Mellin transform and the new
form of expansion can be used to solve the FPK equation and to
determine the probability density function for transient response
of a first-order non-linear system excited by a Gaussian white
noise [19]. Compared to the Galerkin method, this procedure is
based on the complex fractional moments which indicates the
character of the system and do not need to select the basis
functions. Theoretically, this procedure can be directly generalized
to solve two- dimensional FPK equation, the complexity, however,
will be exponentially increased. This severely limits its application
on mechanical and structural systems. Similar to the combination
of Galerkin method and stochastic averaging, the combined
applications of Mellin transform and stochastic averaging may be
an effective technique to derive the transient response probability
density.

In the present manuscript, the transient response probability
density of the second-order non-linear system subject to stochas-
tic external and parametric excitations is investigated. By using the
stochastic averaging based on the generalized harmonic functions,
the FPK equation governing the amplitude response probability
density is derived. Taking Mellin transform on the FPK equation
and referring to the expansion form of the amplitude response
probability density yield a set of linear ordinary differential
equations governing the complex fractional moments. Finally,
the transient probability density is constructed through the com-
plex fractional moments. Numerical results for a representative
example are given to illustrate the application, the convergence
and the precision of the proposed procedure. The influence of the
non-quiescent initial condition on the evolution of transient
probability density is briefly discussed.

2. Stochastic averaging for system reduction

The one-degree-of-freedom oscillator with non-linear damping
subject to externally and parametrically random excitations is
frequently encountered in mechanical and structural engineering,
and the researches on transient response aspect are of great
significance. The equation of motion of the non-linear stochastic
oscillator is as follows,

€Xþ f ðX; _XÞ _Xþω2X ¼ giðX; _XÞWiðtÞ ð1Þ
in which X is the system displacement, _X is the velocity, f ðX; _XÞ is
the non-linear damping coefficient, ω is the natural frequency,
WiðtÞ are independent Gaussian white noises with intensities 2Di

and giðX; _XÞ are the magnitudes of external and parametric excita-
tions. The non-linear damping coefficient and the excitation
magnitudes are supposed as ε order and ε1=2 order, respectively,
i.e., the considered system is with light damping and weak
excitations. Note that an arbitrary function can be described by
polynomial through Taylor expansion, so without loss of general-
ity, f ðX; _XÞ and giðX; _XÞ are confined to be the polynomials of
displacement X and velocity _X.

According to the quasi-conservative property, it is reasonable to
suppose that system (1) has a family of quasi-periodic solutions
surrounding the origin of the phase plane. Introduce the following
van der Pol transformation [20],

X ¼ A cos ΘðtÞ
_X ¼ �Aω sin ΘðtÞ ð2Þ

where ΘðtÞ ¼ωtþΓðtÞ. Due to the small parameter assumptions on
damping and excitation amplitudes, the system amplitude A and
initial phase Γ are slowly varying processes.

Accomplishing the van der Pol transformation in Eq. (2) yields
the stochastic differential equations governing the system ampli-
tude A and initial phase Γ. Furthermore, the slowly varying process
AðtÞ converges weakly into a diffusion Markov process, and the
limiting process is described by the following averaged Itô sto-
chastic differential equation through the Stratonovich-Khasminskii
limit theorem [21–23],

dA¼mðAÞdtþσðAÞdBðtÞ ð3Þ
where the drift and diffusive coefficients are,

mðAÞ ¼ 〈�Af sin 2Θ〉ΘþDi
∂gi sin Θ

∂A
gi sin Θ

ω2 þ∂gi sin Θ

∂Γ
gi cos Θ

Aω2

� �
Θ

σ2ðAÞ ¼ 2Di
g2i sin

2Θ

ω2

* +
Θ

ð4Þ

The FPK equation associated with the averaged Itô stochastic
differential Eq. (3), governing the evolution of the amplitude
response probability density, is of the following form,

∂pðA; tÞ
∂t

¼ � ∂
∂A

½mðAÞpðA; tÞ�þ1
2

∂2

∂A2 ½σ2ðAÞpðA; tÞ� ð5Þ

As f ðX; _XÞ and giðX; _XÞ are of polynomial form, the drift and
diffusive coefficients can be simplified to the following form:

mðAÞ ¼ a�1A
�1þ ∑

k1

i ¼ 1
aiA

i

σ2ðAÞ ¼ b0þ ∑
k2

i ¼ 1
biA

i ð6Þ

where the coefficients ai and bi are related to the system
parameters and excitation parameters.

3. Transient probability density of amplitude response

Obviously, the direct solving of FPK Eq. (5) under given
boundary and initial conditions will yield the transient probability
density of amplitude response. As mentioned above, the complex
fractional moment method is an effective technique to solve the
one-dimensional FPK equation. The FPK Eq. (5) with respect to
amplitude response probability density is just one-dimensional, so
can be considered to be solved by complex fractional moments. To
the sake of the descriptive integrality, some fundamental concepts
are briefly illustrated.

3.1. Fundamental concepts on Mellin transform and complex
fractional moment

Suppose qðxÞ is a real function defined in 0rxo1. The Mellin
transform is defined as follows [19]:

Mqðγ�1Þ ¼
Z 1

0
qðxÞxγ�1dx ð7Þ

where γ ¼ ρþ Iη is a complex number and I is the imaginary unit. If
the Mellin transform exists, then qðxÞ may be restituted by the
following formula:

qðxÞ ¼ 1
2π

Z 1

η ¼ �1
Mqðγ�1Þx� γdη; x40 ð8Þ

The integration in Eq. (8) is performed along the imaginary axis η
under the fixed real part ρ.

The condition for the existence of the Mellin transform is
�ρloρo�ρh, in which ρl and ρh satisfy qðxÞ ¼Oðxρl Þ as x-0 and
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