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a b s t r a c t

This paper studies the behavior of a pinned half-sine arch, with a center rigid constraint plate, under a
static concentrated moment. Under proper loading conditions, the arch will be in contact with the
constraint plate at discrete points. This type of configurations is referred to as the contact equilibrium
configuration. Geometric restrictions on the deformation of the arch at the contact point are derived.
Then, the method of mode expansion is used to solve the force equilibrium equations together with the
geometric restrictions for the equilibrium configuration. Due to the restrictions on the deformation of
the arch imposed by the constraint plate, the classical potential energy method cannot be directly
applied to determine the stability of the contact equilibrium configuration. A modified potential energy
method is proposed for overcoming this problem. With the proposed method, the effects of the
magnitude and location of the applied moment on the deformation and stability of the arch are
investigated thoroughly. We find that, in the presence of the constraint plate, the arch possesses more
complicated deformation patterns. Finally, experiments are conducted to validate the theoretical results.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that an unconstrained arch may jump from
one stable equilibrium configuration to another at a critical level of
load. This process is called snap-through buckling. The quick
(dramatic) change in configuration in a snap-through buckling
has found applications in different fields of sensors and actuators
[1–7]. However, in some applications, a constraint, in the form of a
rigid plate along the line connecting the two ends of the arch, is
presented so that some of the stable configurations are not
accessible. A mechanical button on an instrument panel can be
qualitatively regarded as a shallow arch with a rigid constraint
plate underneath. For an electrically actuated micro-arch, the
electrode beneath the arch can be treated as a rigid constraint
plate [8,9]. A vehicle traveling on a concrete pavement blowup
presents another practical example [10]. In this case, the shallow
arch represents the blowup and the rigid plate the foundation. The
presence of the constraint plate may result in complicated defor-
mation patterns and poses some challenges for the stability
analysis, especially when the arch touches the constraint plate.

Previous works on snap-through buckling can be divided
into two groups: static snap-through buckling and dynamic

snap-through buckling. For static snap-through buckling, the
lateral load is applied quasi-statically. In this case, emphasis is
put on the determination of the critical load and the dependence
of the critical load on various system parameters [11–20].
For dynamic snap-through buckling, the lateral load is time
varying and the focus is put on the conditions under which
dynamic snap-through buckling will not happen [21–34]. Snap-
through buckling for an unconstrained arch has been investigated
thoroughly. By contrast, relatively little research has been devoted
to the behavior of a shallow arch with a center constraint plate.
This paper aims to investigate the effects of the center constraint
plate on the post-buckling behavior of a shallow arch.

The load applied to a mechanical button or the weight of a
vehicle on a pavement blowup can be treated as a concentrated
force. On the other hand, the effect of a piezoelectric patch, which
is often used as an actuator to drive arch-like mini-structures, can
be modeled as a pair of concentrated moments [35]. The behavior
of an elastica constrained by a flat surface and subjected a point
load has been investigated by Chen and Wu [36]. In this paper,
we study the deformation and stability of a shallow arch with a
center rigid constraint plate and loaded by a concentrated
moment.

The rest of this paper is organized as follows. Section 2 presents
the mathematical model and analysis procedure. The modified
potential energy method for the determination of the stability of
the contact equilibrium configuration is described in detail.
Section 3 introduces the experimental setup. In Section 4, the
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variation of the deformation patterns and the associated stability
with the applied load are studied both theoretically and experi-
mentally. Finally, Section 5 offers brief conclusions.

2. Analysis

2.1. Equilibrium equation

Consider the shallow arch shown in Fig. 1. It is homogeneous
and has uniform cross-section. The ends are pinned at a distance l.
A smooth rigid plate is placed between the ends along the x-axis.
On the basis of the Euler beam theory, the equilibrium equation of
the loaded arch can be written as
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where E is Young’s modulus, I the moment of inertia of the cross-
section, y and y0 respectively the coordinates of the deformed
and the initial centerlines measured from the x-axis, H the axial
force, q the distributed load. The axial force can be expressed as
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where A is the cross-sectional area.
For the sake of convenience of discussion, we introduce the

following dimensionless parameters:
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then Eqs. (1) and (2) respectively take the following forms
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with
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where a prime indicates differentiation with respect to x.
The initial unloaded shape y0 of the arch is assumed to be

y0 ¼ h sin ðxÞ ð6Þ
with h representing the dimensionless central arch rise. With the
pinned end conditions, the Fourier representation of the deformed
shape y can be given in terms of sine functions as

ŷðxÞ ¼ ∑
1

n ¼ 1
ŷn sin ðnxÞ ð7Þ

The load distribution q will also be expressed in a Fourier sine
series

qðxÞ ¼ ∑
1

n ¼ 1
qn sin ðnxÞ ð8Þ

In particular, for a concentrated moment applied at x¼ d,

qðxÞ ¼ �Mδ0ðx�dÞ;

and the associated Fourier coefficients are

qn ¼ 2πM0n cos nd

with M0 ¼M=π2.
Substituting Eqs. (6)–(8) into Eqs. (4) and (5) and making use of

the orthogonal property of the sine functions, we obtain the
following set of equations of equilibrium

ð1� P̂Þŷ1 ¼ �q1þh

n2ðn2� P̂Þŷn ¼ �qn; nZ2

(
ð9Þ

and

P̂ ¼ h2� ∑
1

n ¼ 1
n2ŷ2n ð10Þ

2.2. Contact equilibrium configurations

Consider a concentrated moment of magnitude M applied at
x¼ d. When the moment is increased gradually from zero, the
deflection of the arch gradually increases. Initially, the arch is not
in contact with the rigid plate. This type of equilibrium configura-
tion is called the non-contact (equilibrium) configuration. As M
reaches a critical value, either the lowest point of the deformed
arch touches the rigid plate placed along the x-axis, or the non-
contact configuration becomes unstable. In both cases, the arch
will eventually be in contact with the rigid plate. For the
convenience of discussion, the equilibrium configuration in con-
tact with the rigid plate is henceforth referred to as the contact
(equilibrium) configuration. It can be shown that, under the appli-
cation of a concentrated moment, line contact between the arch
and the rigid plate is not possible (a brief proof is given in the
Appendix). Consequently, the arch can only be in contact with the
rigid plate at discrete points. Assume that there is only one contact
point at x¼ s and the contact force is R (Fig. 2). In this case, the
load distribution is

qðxÞ ¼ �Mδ0ðx�dÞ�Rδðx�sÞ;

and the associated Fourier coefficients are

qn ¼ 2πM0n cos nd�2R0 sin ns; ð11Þ

where

M0 ¼
M
π2

and R0 ¼
R
π
:

The geometric restrictions at the contact point are

yðsÞ ¼ 0 and y0ðsÞ ¼ 0 ð12Þ

or equivalently

∑n ¼ 1ŷn sin ðnsÞ ¼ 0 and ∑n ¼ 1nŷn cos ðnsÞ ¼ 0 ð13Þ

Eqs. (9), (10) and (13) form a complete set of equations for the
unknowns, which includes the Fourier coefficients ŷi of the
deformed shape of the arch, axial force P̂, location of the contact
point s, and magnitude of the contact force R.
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Fig. 1. Schematic diagram of a shallow arch constrained by a rigid plate.
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Fig. 2. Schematic diagram of a shallow arch with one contact point.
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