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a b s t r a c t

Hybrid arc-length methods have been used for tracing the post-buckling equilibrium path of semirigid
elastoplastic space frames. For example, the original implicit arc-length method uses the implicit
Newton–Raphson method in both the predictor and the corrector steps, while the explicit arc-length
method uses the explicit dynamic relaxation method in both the steps. The explicit and implicit arc-
length methods have a clear disadvantage in that both require an excessive number of iterations, and the
matrices are often singular. In this study, algorithms for implicit–explicit and explicit–implicit hybrid arc-
length methods are developed for use in the predictor and corrector steps, to improve the accuracy and
efficiency of the said method. The accuracy and applicability of the proposed methods are investigated
by solving examples.

& 2013 Published by Elsevier Ltd.

1. Introduction

The arc-length method (ALM) [1–5] is one of the most
frequently used non-linear numerical techniques for stability
analysis. It is very effective in finding the equilibrium path and
the bifurcation point in buckling and post-buckling problems. The
structural behavior and load parameters of a primary path can be
obtained using the arc-length constraint given a predefined arc-
length parameter. The ALM can be classified as either spherical [1]
or cylindrical [2–5] based on the arc-length parameters used in the
method. The spherical ALM is preferred for bifurcation problems
involving complex equilibrium paths. However, this method
requires asymmetric system–matrix operations.

Crisfield [2] and Ramm [3] proposed a cylindrical ALM and
applied it to the generalized displacement method originally
developed by Batoz and Dhatt [6]. The cylindrical ALM can be
employed for determining load parameters using a simple quad-
ratic function. Non-linear analysis can be performed effectively
using the Newton–Raphson (NR) method because the system
matrices are banded and symmetric, which confirms the quadratic
convergence rate. However, the method has the drawback of
unstable singularity near the critical point.

Despite its weakness, the implicit ALM with NR-type algo-
rithms has been considered effective for solving bifurcation
problems. In contrast to bifurcation problems, limit-point stability
problems for snap-through and snap-back analyses do not neces-
sitate the use of matrix-based eigenvalues or eigenvectors. Instead,
eigenvalues/vectors are used as supplementary information.

To overcome the drawback of the NR method, Lee et al. [7]
proposed a new explicit ALM by combining explicitly the cylindrical
ALM and the dynamic relaxation method (DRM). The methodology
does not require matrix operations and has been successfully applied
to non-linear post-buckling problems. Consequently, the explicit ALM
[7] without any matrix operations has advantages in terms of stability
in solving limit-point stability problems. The algorithm can solve for
displacements and load parameters simultaneously using the cylind-
rical arc-length constraint proposed by Crisfield [2] and Ramm [3]
without any matrix-based instability or operations (such as eigenvalue
problems). However, the number of iterations and the computing time
required to obtain the converged solution might be moderately larger
than those of the implicit NR process.

Conventionally, steel frames are analyzed and designed by
idealizing existing boundary conditions to those of rigid- or hinge-
connections under the assumption of linear elastic material proper-
ties. However, test results show that the connection behavior is
similar to that of a semirigid or non-ideal joint. Yielding, cracking,
and strain-hardening have significant effects on non-linear structural
behavior, and accuracy could be affected by simplifying the condi-
tions to only fixed ends or hinges. Furthermore, for buckling and

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/nlm

International Journal of Non-Linear Mechanics

0020-7462/$ - see front matter & 2013 Published by Elsevier Ltd.
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003

n Corresponding author. Tel.: þ82 42 350 3616; fax: þ82 42 350 3610.
E-mail addresses: kylee@pvamu.edu (K. Lee), j.hong@kaist.ac.kr,

jungwukh@gmail.com, jwhong@alum.mit.edu (J.-W. Hong).

Please cite this article as: K. Lee, et al., Post-buckling analysis of space frames using concept of hybrid arc-length methods, International
Journal of Non-Linear Mechanics (2013), http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003i

International Journal of Non-Linear Mechanics ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/00207462
www.elsevier.com/locate/nlm
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
mailto:kylee@pvamu.edu
mailto:j.hong@kaist.ac.kr
mailto:jungwukh@gmail.com
mailto:jwhong@alum.mit.edu
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003
http://dx.doi.org/10.1016/j.ijnonlinmec.2013.09.003


post-buckling analyses, the element should include the formulation
of geometric non-linearities such as rigid body deformation and
finite joint rotation. Therefore, the semirigid nature of the bound-
aries, and the geometric and material non-linearities of the space
frame should be considered appropriately. However, the elastoplastic
post-buckling response of a semirigid jointed space frame has not
been studied completely in the collapsed simulations.

In this paper, various algorithms of the explicit ALM and
semirigid elastoplastic space element are described based on the
previous research [7,8]. The original implicit ALM uses the implicit
NR in both the predictor and the corrector steps, whereas the
explicit ALM uses the explicit DRM in both the steps. The so-called
hybrid ALMs described in this paper use the implicit or explicit
algorithm in the predictor or corrector steps. As a result, the
implicit–explicit and explicit–implicit hybrid ALM algorithms are
developed in the predictor and corrector steps, respectively. The
disadvantages of having an excessively large number of iterations
in the explicit ALM and of matrix singularity in the implicit ALM
can be resolved by using the mixed hybrid ALMs.

A space frame element that can simulate the material and
geometrical non-linearities, and the semirigid boundaries [8] is
further developed for accommodating the explicit algorithms of
DRM and hybrid ALM. The beam-column equation is used in the
element equilibrium equation with bowing effect [9], and rigid
body motions and finite rotations of large displacements are
considered in the Eulerian finite theory [10,11]. Plastic deforma-
tion due to material yielding is simply described by means of
plastic hinges using perfect material plasticity. The elastic-
connection spring formulation [12,13] is adopted for considering
the semirigid connections of member ends. The overall equili-
brium equation of a composed element can be derived using the
static condensation technique. Numerical examples of elastoplas-
tic post-buckling analysis with a semirigid connection property are
performed using various explicit ALMs, and the numerical accu-
racy and efficiency of the methodology are discussed.

2. Semirigid elastoplastic beam-column element

This study uses a large deformational elastoplastic three-dim-
ensional (3D) space frame element based on an Eulerian-formulated
beam-column element [8]. The local member force–deformation
relationships are based on the beam-column approach, and the
changes in member chord lengths caused by axial strains and flexural
bowing are considered [9]. A Eulerian formulation [10,11] that
considers the effects of finite rotations of large joints is shown in
Fig. 1. The joint element is added to that element using the static
condensation process [12,13]. However, the element does not include
the coupling effect of axial–torsional flexibilities and Wagner effects.

As shown in Fig. 1, if an old position xold of a body is rotated to a
new position xnew , Euler’s theorem of rigid body motions implies that
any finite rotation can be described as a single rotation θ about some
fixed axis described by a unit vector, nn ¼ fnn

1; n
n

2; n
n

3g. The new
position vector xnew can be described using the old position vector
xold, the rotation θ, and the fixed axis unit vector nn.

Based on Euler's finite rotation formula, the rotation matrix is
necessary for describing both joint rotations and member rigid
body rotations. This matrix can be derived from the so-called
Rodriguez rotation vector, a rotation about a fixed axis represented
by a unit vector, and a scalar angle of rotation.

Thus, a 3D rotation can be represented by a vector-like entity,
but such entities cannot be added like vectors. Furthermore, it is
assumed that these vector-like entities possess Taylor series expan-
sions whose increments are the small rotation vectors obtained using
linear structural analysis [23,26]. For separating the large rigid body
deformations of a member from its relative deformations, which are

assumed to be small, a Eulerian or local member coordinate system is
used. In Fig. 2, the unit vector of the non-deformed member axis is ni,
and the unit vector of the deformed member axis is n′

i. The rotation
vector at joint 2 (θ2) can be represented by the cross product of the
member unit vector ni and the deformed member unit vector nn

2 at
joint 2 with the following properties:

θ2ffini � nn

2 ð1Þ

jθ2j ¼ cos �1 ðninn

2Þ ð2Þ
The end of member rotation vector for joint 1 (θ1) can be expressed as
follows:

θ1 ¼ θ2þθ12 ð3Þ
where θ12 is the rotation of joint 1 with respect to joint 2. From this
simple and exact formulation of Euler's finite rotation, we can calculate
the exact member end rotations, θ1 and θ2, which separate the rigid
body rotations.

The member force of the space frame element shown in Fig. 3
can be written using two-dimensional (2D) beam-column equa-
tions, which include the effect of member displacement on the
bending moment to the end.

As shown in Fig. 3, θ1,j and θ2,j ðj¼ 2;3Þ denote the relative
member end rotations with respect to the Xj-axis coordinate
system, as calculated using Eq. (3). φt and u denote linear axial
twist and axial displacement, respectively. M1;j, M2;j, Mt , and Q
denote the bending moments; twist moment; and member axial
force corresponding to the relative member end rotations, axial
twist, and axial displacement, respectively.

Consequently, the member force–deformation can be written
as follows [9,10,11]:

sT ¼ fQ : Mt : M1;2 : M1;3 : M2;2 : M2;3g ð4Þ

uT ¼ fu : φt : θ1;2 : θ1;3 : θ2;2 : θ2;3g ð5Þ
The incremental form of the member equilibrium equation can be
written as follows:

Δs¼ kbΔu ð6Þ
where kb denotes the local stiffness matrix according to the
incremental member displacement Δu in the local coordinate
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Fig. 1. Eulerian finite rotation about an axis.
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