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a b s t r a c t

In this paper we consider the motion of thin visco-plastic Bingham layer over an inclined surface whose
profile is not flat. We assume that the ratio between the thickness and the length of the layer is small, so
that the lubrication approach is suitable. Under specific hypotheses (e.g. creeping flow) we analyze two
cases: finite tilt angle and small tilt angle. In both cases we prove that the physical model generates two
mathematical problems which do not admit non-trivial solutions. We show that, though the relevant
physical quantities (e.g. stress, velocity, shear rate, etc.) are well defined and bounded, the mathematical
problem is inherently ill posed. In particular, exploiting a limit procedure in which the Bingham model is
retrieved from a linear bi-viscous model we eventually prove that the underlying reason of the
inconsistency has to be sought in the hypothesis of perfect stiffness of the unyielded part. We therefore
conclude that: either the Bingham model is inappropriate to describe the lubrication motion over a non-
flat surface, or the lubrication technique fails in approximating thin Bingham films.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Several authors have studied visco-plastic or Bingham flows
[35,7,22,37,6,12,28,36,24] and in particular the so-called “ lubrica-
tion paradox” for yield stress fluids [28,22]. The specific case of a
visco-plastic “ thin film” flowing down an inclined surface has
been widely investigated [23,1,27,34] and we refer the reader to
the recent papers [3,21] for a general overview.

In this paper we study the flow of a Bingham fluid down a non-
flat surface1 yn ¼ bnðxnÞ under the sole action of gravity (see Fig. 1).
Referring to Fig. 1, we set α¼ arcsin ðDn=LnÞ as the tilt angle and
we assume that dbn=dxn is “small” but not zero (non-flat surface).

We assume that the ratio ɛ between the thickness of the fluid
layer and the length of the surface is sufficiently small (lubrication
approximation) and we expand the physical quantities in powers
of ɛ, matching the corresponding terms in the governing equa-
tions. We focus on a fully developed flow, not considering the
thorny issue of the advancing wetting front. We analyze the
following cases2:

(1) tan α¼Oð1Þ (Section 3);
(2) tan α¼OðɛÞ (Section 4);

We show that, unless bnðxnÞ does not have a specific profile
(polynomial of order nr2 for case (1), or bn � 0, for case (2)), the

classical Bingham model gives rise to mathematical paradoxes like
the ones encountered in the channel flow, [22]. We remark that
compatibility issues between top and bottom boundary conditions
arise also when both contact friction and Coulomb friction are
considered (see, e.g. [26]). In particular, we show that the incon-
sistency lies not on the divergence of the stress at the “solid-fluid”
interface, but is intrinsically related to the mathematical structure
of the problem, which does not admit solutions that fulfill the
basic physical requirements. As a consequence we conclude that:
either the Bingham model may be inadequate to describe the
“lubrication” flow over a generic surface, or the “lubrication”
technique fails in approximating the thin film flow of a Bingham
fluid.

The lubrication paradox is an “old problem” (see again [22])
and some of the authors that have investigated it (see, e.g. [1])
claim that the paradox is only apparent. The main motivation for
this claiming is that the asymptotic expansion seems to break
down at the yielding interface as it seems to give rise to
unbounded diagonal stress components. Accordingly the paradox
must be ascribed to an improper scaling which has to be corrected
in order to avoid diverging stress. Our opinion disagree with this
conclusion as we have found that the stress is actually bounded on
the yield surface. In particular we prove that:

(a) The stress components are all bounded at both ɛ0, and ɛ1

orders (and so the scaling is correct).
(b) Velocities and interfaces are well defined and bounded at the

ɛ0 order.
(c) The paradox arising from the model is purely mathematical.

Indeed we do not find any physical inconsistency (e.g.
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unbounded stress components), but we show that the math-
ematical structures of the problems are inherently ill posed.
We actually prove that the BVP's do not admit solutions that
are compatible with the constraints imposed by the kine-
matics. Actually, it would be more correct to say that the
paradox stems from an incorrect modeling approximation (but
we shall return on this issue at the end of the introduction).

(d) The mathematical inconsistencies may also be highlighted
considering a “bi-viscous” model which tends to the classical
Bingham. This issue is illustrated in some detail in Appendix A.

The paper develops as follows: in Section 2 we illustrate the basic
assumptions and we give a necessary condition for the solutions to be
physically meaningful (Proposition 1). Then we develop the model
assuming that the solutions are consistent with Proposition 1 and we
check whether the mathematical problems admit solutions or not.

In Section 3 we introduce the equations approximated at the
zero order for case (1) and we illustrate (Proposition 2) the
kinematic constraint imposed by Proposition 1. In particular, in
Appendix A, exploiting entropy arguments, we show that the “bi-
viscous” model tends to the one of Bingham only if the constraint
imposed by Proposition 2 is fulfilled.

Section 3.2 is devoted to the mathematical contradiction. Here
we prove (Theorem 2) that the mathematical problem is uniquely
solvable (in the sense of Propositions 1 and 2), if two conditions
are fulfilled: (i) bnðxnÞ is flat or is a parabola, and (ii) the inlet
discharge is constant in time. In all the other cases (e.g. bottom
surface flat but inlet discharge varying in time) the mathematical
problem is simply ill posed. In Section 4, proceeding in an
analogously way, we analyze case (2), proving that the mathema-
tical problem is well posed only if bnðxnÞ is flat and the inlet
discharge is constant (Theorem 3).

Finally in Section 5 we present two tables listing the various
results, which provides a summary of the solvability/non-solva-
bility of the mathematical problems.

The achievement of the above mentioned results was facilitated of
having used a fully implicit constitutive Bingham-like model, as
recently stressed by Rajagopal [29–32]. The advantage of using such
an approach relies mainly in the fact that the asymptotic expansions
can be easily treated. Indeed the matching between the corresponding
terms is straightforward (see Remark 6). We refer the readers to the
paper [33] for an interesting application of lubrication approximation
to a fluid whose constitutive equation is defined implicitly.

A possible way for overcoming the mathematical paradoxes that
arise in the lubrication approximation might be to consider a model
allowing for deformations of the “unyielded phase”. In this sense we
refer to the pioneering work of Oldroyd [25], Yoshimura and
Prud'homme [38] and to the recent works by Fusi and Farina [8–11]

and [13–18]. Of course, it is quite possible that the full system of
equations generated by the Binghammodel do not exhibit paradoxical
behavior. Indeed, the paradoxes we encounter here are closely tied to
the peculiar geometrical setting that we are considering. However, if
this were true, we simply conclude that the asymptotic technique is
not applicable to the thin Bingham flows.

2. Geometrical setting, kinematics and governing equations

We consider a continuum, modeled as an incompressible
Bingham fluid, that flows down an inclined surface forming a layer
of varying width, as schematically depicted in Fig. 1. The discharge
per unit layer width, QnðtnÞ, is prescribed. In particular, we set

QnðtnÞ ¼ qðtnÞQn

ref ; ½Qn

ref � ¼m2=s; ð2:1Þ

where q¼Oð1Þ and Qn

ref represent the order of magnitude of the
discharge. Denoting by ρn the material density (uniform and
constant), by ηn the viscosity and by Hn the characteristic thickness
of the layer we find (see e.g. [2])

Hn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηnQn

ref

ρngn sin α
3

s
; ð2:2Þ

where gn is gravity acceleration. Denoting by Ln the longitudinal
length scale, we introduce the parameter

ɛ¼Hn

Ln
; ð2:3Þ

and rescale the spatial variables as

x¼ xn

Ln
; y¼ 1

ɛ
yn

Ln
: ð2:4Þ

As mentioned in the introduction we assume

ɛ51; ð2:5Þ
so that the “lubrication approximation” is suitable.

We introduce the Eulerian velocity

unðxn; tnÞ ¼ un

1exþun

2ey;

and we rescale the bottom surface as bn ¼ bBn, where
Bn ¼maxxn A ½0;Ln�jbnðxnÞj. Since we do not want to deal with detach-
ment phenomena, we consider

max
xn A ½0;Ln �

dbn

dxn

����
����¼ B max

xA ½0;1�
db
dx

����
����51: ð2:6Þ

where B¼ Bn=Ln. Indeed, to be more precise, we assume B¼OðɛÞ, and
maxxA ½0;1� db=dx

�� ��¼Oð1Þ, and, to keep notation simple, we set B¼ ɛ
(see also Remark 2). Next, introducing the unit normal and unit
tangent vectors to the bottom surface nb, and tb, respectively, we
define

un

n ¼ unðxn;bnðxnÞÞ � nb ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ɛ
db
dx

� �2
s �ɛ

db
dx

un

1þun

2

� �
; ð2:7Þ

un

t ¼ unðxn;bnðxnÞÞ � tb ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ɛ
db
dx

� �2
s un

1þun

2ɛ
db
dx

� �
: ð2:8Þ

Finally we denote by Un the characteristic longitudinal velocity of the
fluid that, recalling (2.2), yields

Un ¼Qn

ref

Hn
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρngnQn2

ref sin α
ηn

3

s
¼ ρngnHn2

ηn
sin α: ð2:9Þ

Remark 1. A more general approach to the problem should
consider a set of curvilinear coordinates ðϰn; ξnÞwhose unit vectors

Fig. 1. Sketch of the flow (not on scale).
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