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a b s t r a c t

In this study, the effect of steady viscous forces (skin friction and pressurization) on the non-linear
behaviour and stability of cantilevered shells conveying fluid is investigated for the first time. These
forces are obtained by using the time-mean Navier–Stokes equations and are modelled as initial loadings
on the shell, which are in a membrane-state of equilibrium with in-plane stresses. The unsteady fluid-
dynamic forces, associated to shell motions, act as additional loadings on this pre-stressed configuration;
they are modelled by means of potential flow theory and obtained by employing the Fourier transform
technique. The problem is formulated using the extended Hamilton's principle in which the shell model
is geometrically non-linear and based on Flügge's thin shell assumptions. This model includes non-linear
terms of mid-surface stretching and the non-linear terms of curvature changes and twist, as well.
The displacement components of the shell are expanded by using trigonometric functions for the
circumferential direction and the cantilevered beam eigenfunctions for the longitudinal direction.
Axisymmetric modes are successfully incorporated into the solution expansion based on a physical
approximation. The system is discretized and the resulting coupled non-linear ODEs are integrated
numerically, and bifurcation analyses are performed using the AUTO program. Results show that the
steady viscous effects diminish the critical flow velocity of flutter and extend the range of flow velocity
over which limit cycle responses are stable. On the other hand, the non-linear terms of curvature changes
and twist have very little effect on the dynamics. The system exhibits rich post-critical dynamical
behaviour and follows a quasiperiodic route to chaos.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many biological and engineering systems involve thin-walled
shells conveying incompressible fluid flow. Pulmonary passages
and veins are examples of these types of structures in physiolo-
gical systems; heat exchangers, jet pumps and heat shields of jet
engines are examples of where such systems may be found in
engineering applications.

Given the numerous applications of thin shells conveying fluid,
studying their stability and acquiring knowledge about their post-
instability behaviour are of great importance in avoiding cata-
strophic structural failures in engineering systems and in obtain-
ing a better understanding of how biological systems function.
A complete account and treatment of this subject may be found in
Païdoussis [1, Chapter 7].

Païdoussis and Denise [2] developed the first linear analytical
model for clamped–clamped and cantilevered (clamped-free)
shells conveying inviscid incompressible fluid, and they also

performed experiments. They showed for the first time that at
sufficiently high flow velocities shells lose stability in either beam
or shell modes: cantilevered shells lose stability by flutter, while
supported-end shells do so by divergence (buckling). Since then, a
large body of research has been devoted to the study of the linear
stability of thin shells subjected to inviscid subsonic flows. Weaver
and Unny [3] and Shayo and Ellen [4] investigated the stability of
shells with simply-supported ends. Later, Shayo and Ellen [5]
studied the linear dynamics of cantilevered shells conveying fluid,
recognizing the importance of fluid behaviour beyond the free end
of the shell; they introduced the concept of a “downstream flow
model”.

In all aforementioned studies the fluid viscosity is neglected,
and fluid-dynamic forces are modelled assuming that the flow is
inviscid. However, in reality fluids are viscous to a greater or lesser
extent, and it is of interest to take the fluid viscosity into account
and study its effects.

Païdoussis et al. [6] used the time-mean Navier–Stokes equa-
tions in conjunction with a linear shell model with clamped–
clamped boundary conditions to study the primary aspects of the
fluid viscosity, namely the steady-state pressurization (to over-
come pressure drop) and the skin frictional force. These forces
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were found to be important as far as stability of the system is
concerned. The effect of steady viscous forces on the linear
stability of cantilevered shells subjected to either internal or
annular flow was analysed by Païdoussis et al. [7]. They found
that, in the case of internal flow, these forces have slight stabilizing
effect, which becomes more pronounced for annular flow. Nguyen
et al. [8] studied the effect of unsteady viscous forces on the linear
stability of coaxial cantilevered shells conveying fluid in the
annulus by means of a CFD-based model; they found that the
unsteady effects of viscosity diminish with decreasing annular gap
size, provided that the gap is small enough. Amabili and Garziera
[9] studied the effect of steady viscous forces on the linear
vibrations of simply-supported shells with non-uniform con-
straints, lying on an elastic foundation with added masses.

All the aforementioned theoretical work was done by means of
linear theory. The linear theory, however, is limited to predicting
the dynamics only up to the first loss of stability and is not capable
of predicting the post-instability behaviour of the system. Non-
linearities come into play at deformation amplitudes of the order
of the shell thickness, which in many cases are not hard to achieve.
Thus, investigation of the non-linear behaviour of the system is of
value from a design point of view.

Investigation of the non-linear behaviour of simply-supported
shells conveying inviscid fluid flow has been carried out by Lakis
and Laveau [10]. They considered only the non-linearities asso-
ciated with the fluid flow and found that these non-linearities do
not have a considerable effect on the oscillations of the order of
the shell thickness. Amabili et al. [11] re-examined the non-linear
dynamics and stability of simply-supported shells conveying
inviscid fluid. They used Donnell's non-linear shallow-shell theory
for the structure and linearized potential flow theory for the fluid.
It was shown that the system loses stability through a subcritical
divergence. Also, the response of simply-supported shells contain-
ing quiescent or flowing fluid under harmonic excitation has been
addressed in [12]. Non-linear dynamics and stability of clamped–
clamped shells subject to annular or internal inviscid fluid flow
was investigated theoretically and experimentally in [13] for the
first time. They employed linearized potential flow theory to
formulate the fluid-dynamic forces and Donnell's non-linear
shallow-shell theory for the structure; comprehensive experi-
ments were also performed. Both theory and experiments show
that the system loses stability via a subcritical divergence. Amabili
et al. [14] took into account the steady viscous effects in their non-
linear model for supported-end shells conveying fluid.

Paak et al. [15] investigated the non-linear stability and the
post-instability response of cantilevered shells conveying inviscid
fluid for the first time. They found that the system loses stability
by flutter in a supercritical fashion (i.e., a supercritical Hopf
bifurcation); multiple branches of stable limit cycles were found.
The amplitudes of these limit cycles grow with flow velocity until
they lose stability and the response becomes non-periodic (e.g.,
quasiperiodic or chaotic).

One difficulty arising when dealing with shells conveying fluid
is the inclusion of axisymmetric modes in the solution expansion.
For supported-end shells, this issue is circumvented by assuming
an infinite shell with periodic supports and presuming that the
shell deformation over ½L;2L� is the reflection of that over ½0; L�, L
being the shell length [13]. Such an artifice is not possible for
cantilevered shells conveying fluid. However, in this paper, the
axisymmetric modes are included in the solution expansion by
using a physically sound approximation.

The influence of steady viscous forces on the non-linear
stability and the post-instability dynamics of cantilevered shells
conveying fluid had not been explored up to now. In the present
study, we extend the theory and investigate the effect of such
forces on the non-linear behaviour of the system.

2. Formulation

2.1. Definitions and assumptions

Fig. 1 is a schematic diagram of the system under consideration.
The shell has thickness h, length L, mean radius R and is assumed
to be thin (i.e., h=R51), clamped at x¼0 and free (unsupported) at
x¼L. The displacement components of the shell middle surface
along the axial, circumferential and radial directions are denoted
by u, v and w, which are functions of time and the middle surface
coordinates of the shell (x,y) in which y¼ Rθ. The shell material is
considered to be linearly elastic, homogeneous and isotropic, with
Young's modulus E, Poisson ratio νs and density ρs. Viscous
damping with coefficient c is considered to model the structural
energy dissipation. The shell non-linearity is of geometric type,
which is described by large deformation theory.

The fluid is assumed to be incompressible with density
ρf, flowing in the positive x-direction with a constant mean
velocity U.

The unsteady fluid-dynamic forces due to the shell motions are
derived by assuming that the fluid flow is inviscid and irrotational,
thus enabling the utilization of potential flow theory. These forces
are in the radial direction. The pressurization and the skin
frictional forces (steady viscous forces) are taken into account as
additional radial and axial loadings related to the steady mean
flow. This is a simplification which renders the two parts (i.e., the
mean flow and perturbation flow fields) decoupled from the
outset.

In this paper, partial derivatives may be represented by sub-
scripts preceded by a comma, e.g., ∂2ðÞ=∂x∂y� ð Þ;xy, and the prime
denotes differentiation with respect to the argument of the primed
function.

2.2. Equations of motion

The extended Hamilton's principle is utilized to obtain the
governing equations of the system; i.e.,

Z t2

t1
½ðδT �δUþδWdÞþδWf � dt ¼ 0; ð1Þ

where δ is the variational operator, T the shell kinetic energy, U
the elastic strain energy, δWd the virtual work done by structural
damping forces, and δWf the virtual work done by the unsteady
fluid-dynamic forces.

The non-linear shell model is developed based on Flügge's thin
shell theory [16] and contains the non-linear terms due to mid-
surface stretching as well as the non-linear terms of curvature
changes and twist. To be able to perform the calculations in the
undeformed reference configuration, Green's strain tensor and the
second Piola–Kirchhoff stress tensor (a work-conjugate pair)
are used.

Fig. 1. Schematic of the system.
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