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A time-delayed stochastic optimal bounded control strategy for strongly non-linear systems under wide-
band random excitations with actuator saturation is proposed based on the stochastic averaging method
and the stochastic maximum principle. First, the partially averaged Itd equation for the system amplitude
is derived by using the stochastic averaging method for strongly non-linear systems. The time-delayed
feedback control force is approximated by a control force without time delay based on the periodically
random behavior of the displacement and velocity of the system. The partially averaged Itd equation for
the system energy is derived from that for the system amplitude by using It formula and the relation
between system amplitude and system energy. Then, the adjoint equation and maximum condition of
the partially averaged control problem are derived based on the stochastic maximum principle. The
saturated optimal control force is determined from maximum condition and solving the forward-
backward stochastic differential equations (FBSDEs). For infinite time-interval ergodic control, the adjoint
variable is stationary process and the FBSDE is reduced to a ordinary differential equation. Finally, the
stationary probability density of the Hamiltonian and other response statistics of optimally controlled
system are obtained from solving the Fokker-Plank-Kolmogorov (FPK) equation associated with the fully
averaged It6 equation of the controlled system. For comparison, the optimal control forces obtained from
the time-delayed bang-bang control and the control without considering time delay are also presented.

An example is worked out to illustrate the proposed procedure and its advantages.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control of non-linear stochastic dynamic systems is an
important research area due to its relevance to many engineering
applications. The most widely used tool in solving stochastic
optimal control problem is stochastic dynamic programming
[1,2]. However, so far only linear quadratic Gaussian (LQG) strategy
has been widely used in engineering, even for non-linear stochas-
tic systems [3], due to the difficulty in solving high-dimensional
non-linear HJB equation. In the last decade, a non-linear stochastic
optimal control strategy for non-linear quasi-Hamiltonian (and
generalized Hamiltonian) systems has been proposed by Zhu and
his co-workers [4] based on the stochastic averaging method
for quasi-Hamiltonian systems and dynamic programming princi-
ple. Later, this control strategy was extended to stabilization [5]
and reliability maximization [6] of quasi-Hamiltonian systems. In
practical control problem, system uncertainty, time delay and
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actuator saturation, etc. have to be considered. Thus, the techni-
ques for stochastic optimal control of partially observable systems
[7], stochastic optimal time-delay control [8], stochastic optimal
semi-active control [9] and stochastic mini-max control [10] have
also been developed.

The maximum principle is widely used in the optimal control of
deterministic systems. However, in solving stochastic optimal
control problems, the stochastic maximum principle has been less
applied due to the difficulty in solving the resultant FBSDE,
although some methods for solving this equation have been
developed [11-13]. An optimal control strategy combining the
stochastic averaging method and the stochastic maximum princi-
ple has been proposed by the authors of the present paper through
making some reasonable assumptions [14]. However, several
problems have to be solved before it is applied to engineering
systems. The time delay is usually unavoidable due to the time
spent in measuring and estimating the system state, calculating
and executing the control forces. The effects of time delay have
been studied for different systems [15-17]. It is shown that
without considering the effect of time delay, the control force
may even destabilize the system [18]. The other practical problem
is that the control force should be bounded due to saturation of
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actuator. The saturated linear control of linear systems has been
developed [19,20]. The saturated control strategy for quasi-
Hamiltonian systems has been proposed by Zhu and his co-
workers [21-23].

Strongly non-linear systems under wide-band random excita-
tions often occur in engineering. In the present paper, a time-
delayed optimal control strategy for strongly non-linear systems
under wide-band random excitations with actuator saturation is
proposed based on stochastic averaging and stochastic maximum
principle. By using the stochastic averaging method, the original
control problem is converted to that for system energy, and the
resultant FBSDE is only two dimensional. The time-delayed feed-
back control force is approximated by a control force without time
delay due to the randomly periodic behavior of the displacement
and velocity of the system. The optimal bounded control force is
obtained through the maximum condition derived from the
stochastic maximum principle. An example is worked out to
illustrate the effectiveness and efficiency of the proposed control
strategy.

2. Formulation of original optimal control problem

Consider the following controlled strongly non-linear oscillator
subject to lightly linear and (or) non-linear damping and weak
external and (or) parametric excitations of wide-band noise:

X +g(X) = eh(X,X)+£"2f (X, X)&E(t) + €U,
k=1,2,....m, |u;|<bg 1

where g(X) represents a strongly non-linear restoring force; € is a
small parameter; eh represents lightly linear and/or non-linear
damping force; €'/2f, denote the amplitudes of random excita-
tions; u; =u(X.,X;) is the time-delayed feedback control with
constraint |u;| < bg; & (t) are wide-band stationary ergodic random
processes with zero mean and correlation functions Ry(z) or
spectral densities Sy ().

The objective of present study is to determine a time-delayed
bounded control law to minimize the response of the system (1),
which is expressed in terms of the following performance index:

T . .
Jtg() =E [ [ Xy deyrxen Xy
[us] < bg 2)

for finite time-interval control, or

1T .
Jaueo = Jim 1. [ 10X ey d
[ue| < bo 3)

for infinite time-interval ergodic control. In Egs. (2) and (3),
L(X,X,u;) is the cost function, T is terminal control time,
w(X(T),X(T)) is the terminal cost. Egs. (1), (2), or (1), (3) constitute
the mathematical formulation of the original optimal control
problem.

3. Converted optimal control problem

The unavoidable time delay of control force will cause great
difficulties in optimal control design. In this section, two steps are
adopted to simplify the control problem. First, the original time-
delayed control force will be approximated by the control force
without time delay based on the randomly periodic behavior of
the system states. Then, the original control problem is converted
to that of the system energy by using the stochastic averaging
method.

3.1. Approximate control force without time delay

Assume that when £=0, system (1) has a family of periodic
solutions. Then, when ¢ is small, the response of system (1) will be
randomly periodic and can be written as

X(t)=A cos ¥Y(t)+B

X(t)= —Av(A, ¥)sin ¥(t) 4)
where

Y(t)=D(t)+O(t)

do 2[UA+B)—U(A cos ¥ +B)]
V(A,T):dt:\/ A2 SiHZT

(€))

in Egs. (4) and (5), A,B,¥,® and @ are random processes,
UX) = fé( g(x) dx is the potential energy.

Under the assumption that the time delay 7 is small, the
following approximate relations hold [8]:

X, =X({t—-1)~X cos wrfg sin wt
X:=X({t-7)~X cos wr+Xw sin ot (6)

Thus, the time-delayed feedback control force u(X;,X;) in Eq. (1)
can bg replaceq by the control forces without time delay, i.e.,
uXs, X))~ uX, X; 7).

3.2. Stochastic averaging

Treating Eq. (4) as generalized van der Pol transformations
from X, X to A, ¥. The following equations for A and ¥ can be
derived from Eq. (1):

B e AP+ em (A, o u(A, 2 1)+ € oy Elt)

ddij = w(A) +emy(A, V) +emi(A, W, uA, ¥; 1)+ oy &i(t) )

where w(A) is the average frequency and

m; = mhm cos ¥ +B, —Av(A, ¥)sin P)v(A, ¥)sin ¥

mY = mum, Y. r)v(A, ¥)sin ¥

m, = g(A+;7)zl+h)h(A cos ¥ +B, —Av(A, ¥)sin ¥)v(A, ¥)cos ¥

m4 = mum’ Y. 1)v(A, ¥)cos ¥

o1 = g(/‘\+5?7)ﬁ+h)fkm cos ¥ +B, —Av(A, P)sin P)v(A, P)sin ¥

Ook = mfkm cos ¥ +B, —Av(A, ¥)sin ¥)v(A, ¥)cos ¥
®)

j_ 8-A+B)+gA+B) ©

~ g(—A+B)—g(A+B)

It is seen from Eq. (7) that since & is small so A is slowly varying
process while ¥'is rapidly varying process. Based on the stochastic
averaging method for strongly non-linear systems [24], A(t) con-
verges weakly to a diffusive Markov process as €—0 and is
governed by the following averaged Itd equation:

dA =[m(A)+ e(m});] dt+ o(A) dB(t) (10)
where

0
m(A):e<m1 +/ [(%

01k

7]
tﬂll‘t+T+W

021|[+T> Rkl(T)]dT>
t t
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