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a b s t r a c t

A novel stochastic linearization approach is developed to predict the second-moment response of non-
linear systems under stochastic parametric and external excitations. The present approach is realized by
a two-stage optimization: the first stage of optimal linearization modeling and the second stage of
parameters optimization. Five examples, including two polynomial oscillators, one hysteretic Bouc-Wen
oscillator under stochastic external excitation, and two polynomial oscillators under stochastic para-
metric and external excitations are selected to illustrate the present approach. The validity of the present
approach is validated by some approximate solutions, exact solutions, and Monte Carlo simulations. For
system non-linearity, which can be approximated as a full-states linear combination in the Gaussian
linearization model, the present approach offers a more accurate prediction of the second moment than
that by the Gaussian linearization method. The two-stage optimal Gaussian linearization method
incorporates the merits of Gaussian linearization method in the first stage and the SPEC-alternative in
the second stage.

& 2013 The Author. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The investigation of the dynamic behavior of stochastic non-
linear systems has attracted numerous researchers in the areas of
mechanical, structural, and control engineering for over fifty years
[1,2]. For engineering stochastic non-linear problems, the investi-
gation of dynamic response of the first two moments is the most
essential; however, the complete dynamic behavior can only
be derived from the probability density response. By modeling
an engineering stochastic non-linear system as an Ito's equation,
in principle, the associated density response can be obtained
by solving the Fokker–Planck–Kolmogorov (FPK) equation [3].
In practice, even for stationary solution, the exact density function
can be derived only for certain specific classes of stochastic
externally excited non-linear systems, not to mention with
stochastic parametric excitation, where more challenged issues
need to be considered [3]. For this reason, it strongly depends on
approximate methods and numerical methods for finding
solutions. There are several approximate solution methods includ-
ing Gaussian linearization method, cumulant-neglect closure
method, perturbation method, Gram-Charlier expansion method,

equivalent external excitation method, maximum entropy method,
information closure method, approximate methods of solving FPK
equation, etc., which have developed and extended to predict the
statistical responses of non-linear systems [3–11]. Recent
new advances of path integral [12–14] and probability density
evolution methods [15,16] were proposed to obtain approximate
non-stationary probability density responses. Among those solu-
tion schemes, Gaussian linearization method has been the most-
employed for the purpose of analyzing the first two moments
response of general non-linear stochastic systems in engineering
applications [4–7].

Historically, the earliest work of statistical linearization was
developed independently by Booton (1953) and Kazakov (1954),
and equivalent linearization was contributed by Caughey (1959)
[4–7]. Although there are some subtle differences between them
[4,5,17], stochastic linearization, statistical linearization, equivalent
linearization, or stochastic equivalent linearization have all been
used in agreement as the standard method to analyze statistical
responses of non-linear dynamic systems under stochastic external
excitations [4–7,17]. In the standard method, Gaussian density is
utilized in the mean-square linearization scheme. The minimiza-
tion of mean-square linearization error was extended to that of
energy deviation by Wang and Zhang [18], Zhang et al. [19], and
Elishakoff and Zhang [20] for better predicting the second moment.
The scheme of mean-square energy deviation also showed
improved accuracy of the second-moment response for Duffing
oscillator under colored noise excitations [21]. Socha and Pawleta
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(1994), and later by Elishakoff and Colojani (1997), proposed a
linearization method with an attempt to correct the inconsistent
derivation of linearization coefficients in the standard linearization
method [5]. The method, later recognized as a consistent realiza-
tion of notice in Lin's book [2,7], is named as SPEC-alternative by
Crandall [17]. Actually, the name of SPEC-alternative is more
precisely as SPEC-alternative of Elishakoff and Colojani (SPEC-
alternative-EC).

In recognizing the non-Gaussian response of a general non-
linear stochastic system, a non-Gaussian density is employed in
the mean-square linearization for better prediction of the second-
moment responses [5,17]. It was found that if a non-Gaussian
density, which has the same shape of true distribution, is
employed to replace the Gaussian density in the standard
linearization method, the exact second-moment response can
be derived. The property of non-Gaussian density in linearization
was initially stated and proved by Caughey (1963), and later by
Crandall (1979), and named as true linearization by Kozin (1988)
[7]. For the linearization method of applying non-Gaussian
density to evaluate the linearization coefficients, the linearization
approach is named as non-Gaussian linearization [22].

The standard linearization method for systems under external
Gaussian white noise excitation has been extended to include
parametric Gaussian white noise excitation [5,8,22–26]. For non-
linear systems under parametric Poisson white noise excitation,
the validity of utilizing different Gaussian linearization schemes in
the second-moment response was compared [27]. Methods of
Gaussian linearization with parametric white noise have been
further extended to non-Gaussian linearization for better predic-
tion of statistical responses [22,23,25].

The number of publications on stochastic linearization is very large.
A complete survey on the related literatures is almost impossible.
For other attempts to extend and improve the stochastic linearization
approach, a survey up to 2007 had been given in the book by Socha
[5]. Recently, wavelets-based equivalent linearization methods which
follow the concept of stochastic linearization were developed to
predict time-domain and frequency-domain non-stationary stochastic
response [28,29].

In the prediction of the mean and second-moment responses,
Gaussian linearization method takes advantage of easy imple-
mentation, computational efficiency, acceptable accuracy, and
mostly, applicability to versatile non-linear high-dimensional
engineering systems. For zero-mean response, the accuracy in
predicting the second moment, in general, decreases as the
strength of non-linearity increases. For non-linear systems sub-
jected to stochastic external excitations, the accuracy in predict-
ing the second moment by the SPEC-alternative-EC is less than
that of the standard Gaussian linearization method. However, the
SPEC-alternative-EC provides more accurate optimal lineariza-
tion coefficients than those of the standard Gaussian linearization
method [17]. The advantages and disadvantages of SPEC-
alternative compared with the standard method were argued
and debated in literatures [5,17]. The subtle differences in the
statistical linearization method, equivalent linearization method,
and SPEC-alternative are easily ignored and misused in the
formulation of Gaussian linearization. For the clarification of
the differences in formulation, causal block diagrams were
defined and proposed for the representation of three lineariza-
tion methods [30]. From the block-diagram representations, the
differences in linearization modeling and evaluation of the
second moment of three linearization methods were clearly
identified. In addition, an improved Gaussian linearization
method to incorporate the merits of the standard method and
SPEC-alternative was proposed.

In this paper, a novel stochastic linearization approach for the
prediction of the second-moment response is formulated for

general stochastic non-linear systems. Five examples of non-linear
stochastic oscillators are selected to elucidate the applications of the
proposed method. Finally, the application and performance of the
present approach are concluded.

2. Formulation of two-stage optimal stochastic linearization

A novel stochastic linearization approach for stochastic para-
metrically and externally excited non-linear systems is proposed.
The proposed stochastic linearization approach is an extension of
the improvement method, which is formulated for stochastic
externally excited non-linear systems [30].

Consider a general n-dimensional, non-linear stochastic system
described as

dXðtÞ ¼ FðXðtÞÞdtþGðXðtÞÞdWðtÞ
Xðt0Þ ¼ Xð0Þ; ð1aÞ

where X(t) is an n�1 vector of state processes and X(0) is an initial
condition with given distribution. F(X(t)) is an n�1 vector of linear
and non-linear function of states, G(X(t)) is an n�m matrix of
linear and non-linear function of states, and F(X(t)) and G(X(t))
satisfy the Lispschitz and growth conditions for the existence of
mean-square stationary solution. W(t) represents a zero-mean
m�1 vector Wiener process with intensity

E½dWðtÞdWT ðtÞ� ¼Qwdt: ð1bÞ
The presented approach consists of two major stages. The first

stage is to derive a structure of linearization model by minimizing
the mean-square error between a system and its model [25].
On the other hand, the second stage is to optimize the parameters
of the linearization model for the minimization of modeling error.
For the first stage, the linearization model of the system (1a) can
be described as

dXðtÞ ¼H1ðXðtÞÞdtþH2ðXðtÞÞdWðtÞ
Xðt0Þ ¼ Xð0Þ; ð2Þ

where H1(X(t)) and H2(X(t)) are linear functions of states X(t). For
the linearization model in (2), the model includes linear state-
noise multiplicative terms. Thus, the linearization model is not a
linear but a bilinear form. The approximation of non-linear matrix
functions F(X(t)) and G(X(t)) by H1(X(t)) and H2(X(t)), respectively,
is written as

FðXðtÞÞ �H1ðXðtÞÞ
GiðXðtÞÞ �H2;iðXðtÞÞ ð3aÞ

H1ðXðtÞÞ ¼ CþAðXðtÞ�MðtÞÞ
H2;iðXðtÞÞ ¼ BiþLiðXðtÞ�MðtÞÞ; ð3bÞ

where Gi(X(t)), H2,i(X(t)), with i¼1�m, is the ith partitioned
column vector of G(X(t)), H2(X(t)), respectively, and M(t) is the
mean vector of states X(t) as

MðtÞ ¼ E½XðtÞ� ð4Þ
The approximation errors in (3) for given F(X(t)) and Gi(X(t)) are

ε1 ¼ FðXðtÞÞ�C�AðXðtÞ�MðtÞÞ ð5aÞ

ε2;i ¼ GiðXðtÞÞ�Bi�LiðXðtÞ�MðtÞÞ: ð5bÞ
For minimizing the mean square error of (5a) and (5b), one

proceeds with

∂E½εT1ε1�
∂C

¼ 0;
∂E½εT1ε1�

∂A
¼ 0;

∂E½εT2;iε2;i�
∂Bi

¼ 0;
∂E½εT2;iε2;i�

∂Li
¼ 0: ð6Þ

By assuming that the operations of expected values in (6)
are independent of the linearization coefficients C, A, Bi, and
Li, the linearization matrix C, A, Bi, and Li in (3b) are derived,
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