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a b s t r a c t

An optically thin MEMS beam suspended above a substrate and illuminated with a CW laser forms an
interferometer, coupling out-of-plane deflection of the beam to absorption within it. In turn, laser
absorption creates thermal stresses which drive further deflection. This coupling of motion to thermal
stresses can cause limit cycle oscillations in which the beam vibrates in the absence of periodic external
forcing. Prior work has modeled such thermal–mechanical systems using ad-hoc coupled ordinary
differential equations, with finite element analysis (FEA) used to fit model parameters. In this paper we
derive a first principles model of such oscillations from the continuum description of the temperature
and displacement field. A bifurcation analysis of the model is performed, allowing us to easily estimate
the threshold power for self-oscillation as a function of geometric and optical constants of the beam.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Due to their high frequency, microelectromechanical system
(MEMS) resonators have been proposed for a number of different
sensing [1] and signal processing [2–4] applications in the past
decade. Typically, MEMs resonators are capacitively or piezoelec-
trically driven using a sinusoidal signal. Shifts in their resonant
frequency or phase relationship can be used to infer a measure-
ment or perform a calculation. Such drive methods require an
external, highly stable frequency source and additional conductive
or piezoelectric material layers on the device. Optical excitation
methods can produce self-oscillation without the need for an
external periodic excitation, or additional device layers.

Previous work [5–7] has shown that an optically thin MEMS
device suspended over a substrate sets up a Fabry–Pérot inter-
ferometer which couples absorption and deflection. Illuminating
the device with a continuous wave (CW) unmodulated laser causes
optical–thermal–mechanical feedback. For low laser power, the
device will bend statically, but for high enough laser power it has
been observed experimentally [8] that such devices may undergo
a Hopf-bifurcation leading to self-oscillation. Similar phenomena
include thermal–mechanical feedback oscillations in satellites
subjected to solar radiation [9], and aero-elastic feedback oscilla-
tions (flutter) in aircraft [10].

For interferometric transduction of MEMS resonators to be a
viable means of producing periodic motion, first its causes must
be understood, and then models developed that predict the mini-
mum laser power needed for self-oscillation. Several researchers
have given explanations of the causes of self-oscillation. Churenkov
[6] examined beams with surface coatings and showed that differing
coefficients of thermal expansion between the beam material and
surface coating could cause bending moments that drive oscillation.
Langdon and Dowe [5] assumed that energy was absorbed near the
top surface and that vertical thermal gradients caused bending
moments which drove self-oscillation. Both use energy methods to
derive formulae for the minimum laser power needed to sustain
oscillation. However, we have shown [11] that the mechanical–
thermal coupling in uncoated pre-buckled beams is due to asym-
metry of the anchor support, and not the bi-metallic effect or vertical
thermal gradients. Sekaric et al. gives a semi-empirical formula for
the threshold power for self-oscillation in [12] based on measured
frequency shifts due to heating, though no model of the dynamics.
Gigan et al. have suggested that radiation pressure may drive self-
oscillation in beams coated for high reflectivity [13–15]. In this work
we consider only photo-thermal forces.

Models of device dynamics have also been constructed. Varia-
tions of a coupled oscillator model are used to model device dyna-
mics in [8,16–19]. Perturbation theory is used to estimate the
threshold power for self-oscillation in [8,16]. Such models provide
accurate predictions of the transition power to self-oscillation for
specific devices, but would require parametric FEA to study, e.g.
the impact of device geometry on the transition power.
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Motivated by the need to understand the contributors to low
power self-resonant devices at the level of device design, in this
paper we sacrifice accuracy for ease of use and present an (almost)
parameter free model of interferometrically driven self-resonant
MEMS. Initially straight, doubly supported beams are chosen due to
their simple geometry and wide-spread application. Perturbation
analysis is used to predict the threshold power for self-oscillation,
and predictions compared with the results of numerical continua-
tion. Scalings of threshold power with device geometry and pre-
stress are discussed.

2. Mathematical model

Our analysis models doubly supported MEMS beams illuminated
with a CW laser focused to a spot at their center. A beam theory
model which incorporates in-plane tension is used to model the
displacement field of the beam. Device imperfections are an impor-
tant source of thermal–mechanical coupling in doubly supported
beams [11] and are incorporated later in the model. The temperature
field is also modeled as a one-dimensional continuum governed by a
first order thermal equation. Finally, an optical model determines the
laser power absorbed as a function of the beam's center displace-
ment. These two partial differential equations (PDEs) and one
algebraic equation describe the optical-thermal–mechanical feedback
in the device. A Galerkin projection is used to approximate the PDEs
as a set of coupled ordinary differential equations (ODEs), and an
imperfection term is added to account for asymmetry of the support.
Finally bifurcation analysis of the ODEs is used to estimate the
threshold laser power for self-oscillation.

To begin with, we use beam theory to model the mechanical
behavior of the beam. Our model is adapted from an equation for
the vibration of a beam including membrane stiffness. Only the
details are sketched here, and the reader is referred to the original
paper [20] for further details. Letting x be the position along the
beam, y(x) be the lateral deflection at point x, and including the
effects of membrane stress

M½y;U� ¼ EIy⁗þ Fy″þm €y þ ζ _y ¼ 0; ð1Þ

where m is the mass per unit length, ζ is the viscous damping
coefficient, EI is the flexural rigidity, F is the force of tension in the
beam, primes denote spatial derivatives, and overdots denote time
derivatives. In plane forces arise from residual tension, thermal
expansion, and deflection. Using linear thermo-elasticity and
writing the axial extension due to deflection to first order, the
force of tension, F, is

F ¼ sA−
EA
L

Z L

0
αeUðxÞdxþ EA

2L

Z L

0
ðy′ðxÞÞ2dx; ð2Þ

where s is the residual tensile stress, A is the cross-sectional area
of the beam, L is the length, αe is the coefficient of thermal
expansion, and U(x) is the temperature above ambient. The sign
convention is that positive loads are tensile and negative loads are
compressive. The beam is clamped on both ends giving the
boundary conditions

yð0Þ ¼ yðLÞ ¼ 0; y′ð0Þ ¼ y′ðLÞ ¼ 0: ð3Þ

Fourier's law is used to model the temperature field. Since
MEMS resonators are often used in low pressure environments to
reduce damping, convective heat loss can be ignored. Further-
more, radiative heat loss is negligible for the modest temperature
rises predicted. Finally, it has been shown that through thickness
thermal gradients are negligible [11]. Thus we model the tem-
perature in the beam using a simple 1D thermal model. Letting

_qðxÞ be the heat generated per unit volume, and assuming that the
temperature above ambient is zero at the ends, we get

H½y;U� ¼ _U−αcU″−
1
ρc

_qðxÞ ¼ 0; Uð0Þ ¼UðLÞ ¼ 0: ð4Þ

where αc is the thermal diffusivity, ρ is the mass density, and c is
the specific heat capacity. Note that our thermal boundary condi-
tions (4) assume that the substrate acts as an infinite heat sink.

The heating _qðxÞ depends on the total laser power P, spatial
power distribution, and on the fraction, f(x), of power absorbed at
a given distance along the beam. Due to the Fabry–Pérot inter-
ferometer between the beam and substrate, f(x) depends on x
through the displacement field y(x). Using the optical properties of
the films involved, and their thicknesses, f ðyðxÞÞ can be solved for
numerically [21]. However the bifurcation to limit cycle oscilla-
tions depends on this function only in the neighborhood of the
fixed point, and so we use a Taylor series approximation about
zero-deflection.1 Assuming that the laser power is focused to a
spot at the beam's centerline we get

_qðxÞ ¼ P
A
½αo þ γyðxÞ�δ x−

L
2

� �
; ð5Þ

where P is the total laser power, αo is the zero-deflection absorp-
tion, γ is the contrast of the Fabry–Pérot interferometer, and the
delta-function, δ, is our spatial power distribution.

Finally, our equations are projected onto a set of test functions
using the Galerkin method, and a set of coupled, non-linear ODEs
obtained. For our test functions we select a time-dependent
weight function multiplied by a space dependent shape function

~yðx; tÞ ¼ aðtÞ 1− cos
2πx
L

� �� �
; ~U ðx; tÞ ¼ bðtÞ sin πx

L

� �
: ð6Þ

Note that our test functions satisfy the boundary conditions
(3) and (4) regardless of the time dependent weight functions.
Requiring that our error in approximation be orthogonal to the test
functions gives 2 ODEs governing the weight functions
Z L

0
~yðx; tÞM½ ~yðx; tÞ; ~U ðx; tÞ�dx¼ 0- €a þ c0 _a þ c1aþ c2a3 ¼ c3ab; ð7Þ

Z L

0

~U ðx; tÞH½ ~yðx; tÞ; ~U ðx; tÞ�dx¼ 0- _b ¼−c4bþ 2P
mcL

αo þ 2γa½ �; ð8Þ

with the constants ci defined as follows:

c0 ¼
ζ

m

c1 ¼
4π2sA

3 mL2
þ 16π4EI

3mL4

� �

c2 ¼
4π4AE

3 mL4

� �

c3 ¼
8παeAE

3mL2

� �

c4 ¼
π2αc

L2

� �
:

Our thermal Eq. (8) is a simple first order thermal equation
coupled to the mechanical Eq. (7) through the 2P=mcL αo þ 2γa½ �
term. The mechanical equation is in the form of a damped Duffing
oscillator coupled to the thermal equation through the c3ab term.
If we neglect the damping and non-linear terms in (7) then our
linearized mechanical equation demonstrates the correct fre-
quency relationship inherent in Euler buckling and correctly

1 This approximation eliminates the periodicity of the interference field and
suppresses some phenomenon in the post-Hopf dynamics such as spectral distor-
tion [7,22], limiting amplitude [23], and multi-mode oscillations [23,22]. To first
order, it has no impacted on the predicted value of PHopf.
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