
On the dynamics of a non-linear Duopoly game model

Isabella Torcicollo n

Istituto per le Applicazioni del Calcolo “Mauro Picone”, CNR, Naples, Italy

a r t i c l e i n f o

Article history:
Received 24 April 2013
Received in revised form
14 June 2013
Accepted 14 June 2013
Available online 26 June 2013

Keywords:
Continuous Cournot–Kopel model
Non-linear duopoly game
Non-linear stability
Adaptive expectations
Self-diffusion
Cross-diffusion

a b s t r a c t

The Cournot duopoly game modeled by Kopel, with adaptive expectations, is generalized by introducing
the self-diffusion and cross-diffusion terms. General properties, such as boundedness and uniqueness,
are obtained. Non-linear stability results are reached by the analysis of the stability of a ODE system.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Oligopoly is the case where the market is controlled by a few
number of firms producing similar products. In this paper we will
restrict ourselves to the case of two firms, which is called duopoly.
The situation in a duopoly is complex, since both firms have to
take into account not only the behaviours of the consumers, but
actions and reactions of the competitor. The first well-known
model which gives a mathematical description of competition in a
duopoly market dates back to the French economist Cournot
(1838). In this paper, our starting point is the general case of the
Cournot duopoly problem, which was modeled by Kopel (see
[1–3]); precisely, we will examine the continuous time-scale
counterpart of the above-mentioned non-linear Cournot–Kopel
duopoly game.

Assuming continuous time scales, denoting by u and v the
outputs of the two firms X and Y, respectively, a non-linear
dynamic system for the evolution of u and v is obtained:

∂tu¼ −α1uþ α1μ1vð1−vÞ
∂tv¼ −α2vþ α2μ2uð1−uÞ

(
ð1Þ

where, in general, μi and αi with (i¼1,2) are positive model
parameters, ∂t denotes the derivative with respect to time,
u : ðx; tÞ∈Ω� Rþ-uðx; tÞ∈R, v : ðx; tÞ∈Ω� Rþ-vðx; tÞ∈R, Ω being a
bounded domain in R3 with smooth boundary ∂Ω.

To be realistic, any dynamical economic model should take into
account both the time evolution and the spatial dependence of the
characteristic variables.

In this paper, in order to generalize the model (1), we take into
account the spatial dependence, by introducing the self-diffusion
and cross-diffusion terms, by considering the following equations:

∂tu¼ −α1uþ α1μ1vð1−vÞ þ γ11Δuþ γ12Δv
∂tv¼−α2vþ α2μ2uð1−uÞ þ γ21Δuþ γ22Δv

(
ð2Þ

where Δ denotes the Laplacian operator, γij ¼ constant for
ði; j¼ 1;2Þ and

∑
2

i;j ¼ 1
γijξiξj≥kjξj2 k40; ξ¼ ðξ1; ξ2Þ: ð3Þ

Already in [4,5] the authors introduce a new class of economic
dynamical models, which are called “morphogenetic systems”,
which are constructed in order to generalize classical Goodwin's
model of business cycle. Non-linear reaction–diffusion equations
and systems play an important role in the modeling and study of
many phenomena (see, for instance, dynamics of competing
species, chemical aggression and convection problems in porous
media, non-linear heat conduction, semiconductor devices, in
[6–26]).

To (2) we append the initial data

uðx;0Þ ¼ u0ðxÞ; vðx;0Þ ¼ v0ðxÞ for x∈Ω ð4Þ
and the following boundary conditions:

Dirichlet boundary conditions

u¼ u and v¼ v on ∂Ω� Rþ; ð5Þ
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where u, v will be chosen among the constant steady-states
solutions of (2), or Robin boundary data

βuþ ð1−βÞ∇u � n¼ uβ

βvþ ð1−βÞ∇v � n¼ uβ;
on ∂Ω� Rþ

(
ð6Þ

where 0oβo1.
The aim of the present paper is to analyse the non-linear L2-

stability of the constant steady states of (2) by following the
procedure introduced by Rionero in [6] and used in [7–11].
Precisely, our aim is to link the stability (instability) of the generic
equilibrium to (2) to the stability (instability) of the null solution
to a linear system of ordinary differential equations associated to
(2). The plan of the paper is the following. Section 2 is dedicated to
the derivation of the mathematical model at hand, while, in
Section 3, we consider the perturbation equations associated to
the generalized model. Section 4 concerns boundedness and
uniqueness of perturbations, while Section 5 is devoted to recall
some results which allow to obtain conditions guaranteeing the
stability (Section 6) of a critical point. Section 7 concerns a
simplified case in which the obtained results are exemplified and
commented. The paper ends with an Appendix in which the proof
of Lemmas 1–2 and of Theorems 3 and 4 is given.

2. The mathematical model

Two firms X and Y produce goods which are perfect substitutes
and offer them at discrete time periods t¼0,1,2,…on a common
market. In order to determine the quantity of period t+1, the firms
X and Y form expectations on the quantity of the other firm yetþ1
and xetþ1, which might, for example, depend on their own quantity
and the quantity of the other firm, both produced in the previous
period. If we denote by xt and yt the output of firm X and Y at time
t, respectively, the optimization problem through which the firms
determine their quantities xtþ1 and ytþ1 are represented by
arg maxxΠXðxt ; yetþ1Þ and arg maxyΠY ðxetþ1; ytÞ where ΠXð�; �Þ and
ΠY ð�; �Þ denote the profit of firm X and Y respectively. If we assume
that these optimization problems have unique solutions, then

xtþ1 ¼ rXðyetþ1Þ ð7Þ

ytþ1 ¼ rY ðxetþ1Þ ð8Þ
where rX ; rY are called Best Replies (or reaction functions). We will
assume that the firms revise their beliefs according to the adaptive
expectations rules

xetþ1 ¼ xet þ α1ðxt−xet Þ ð9Þ

yetþ1 ¼ yet þ α2ðyt−yet Þ ð10Þ
where αi40 are referred to as the adjustment coefficients and we
will assume the following well-known type of reaction functions:

rxðyÞ ¼ μ1yð1−yÞ ð11Þ

ryðxÞ ¼ μ2xð1−xÞ ð12Þ
where μi ði¼ 1;2Þ measure the intensity of the effect that one
firm's actions has on the other firm. Many specifications can be
found in the literature, but an analytical expression for the Best
Replies is complicated. Microeconomic foundations of (11)–(12)
can be found in [1].

Then, from (7) to (12) and, in order to simplify the notation,
replacing xt

e, yte with xt, yt, the Cournot–Kopel model is obtained:

xtþ1 ¼ ð1−α1Þxt þ α1μ1ytð1−ytÞ ð13Þ

ytþ1 ¼ ð1−α2Þyt þ α2μ2xtð1−xtÞ: ð14Þ
Firms do not change their productions according to the computed

optimal productions, but they prefer to choose a weighted average
between the previous production and the computed one, with
weights 1−αi and αi, respectively. The meaning of model implies
that the economically relevant case is αi ≤1 ði¼ 1;2Þ. The model
(13)–(14) is a two-dimensional map, described in [1,27]. Bifurca-
tions of map have been studied in [28,29]; fixed points, their
stability and stable cycles have been studied intensively in the
literature [27,30,31], in particular under the assumption

μ1 ¼ μ2 ¼ μ; α1 ¼ α2 ¼ α; ð15Þ

that is the players are homogeneous with regard to the Best
Replies and with regard to their expectations, respectively. These
two assumptions imply that the two competitors behave
identically.

In this paper, starting from the continuous time-scale counter-
part of the above-mentioned non-linear Cournot duopoly game
(1), we will examine the generalized model (2), where we took
into account the spatial dependence, by introducing the self-
diffusion and cross-diffusion terms.

3. Perturbation equations associated to the generalized model

We denote by ðu; vÞ the generic equilibrium point of (1).
Besides the trivial equilibrium ðu ¼ 0; v ¼ 0Þ, system (1) admits
other non-trivial constant steady states, which can be found by
solving

Y3 þ pY þ q¼ 0 ð16Þ

where we have set

Y ¼ μ1μ2ð1−uÞ−
μ1μ2
3

p¼ −
μ21μ

2
2

3
þ μ21μ2

q¼ −
2μ31μ

3
2

27
þ μ31μ

2
2

3
−μ21μ2:

8>>>>>><
>>>>>>:

ð17Þ

The solutions to (16) are

Y1 ¼ Yþ þ Y−

Y2 ¼−
Yþ þ Y−

2
þ i

Yþ−Y−

2

ffiffiffi
3

p

Y3 ¼−
Yþ þ Y−

2
−i
Yþ−Y−

2

ffiffiffi
3

p

8>>>><
>>>>:

ð18Þ

where

Yþ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
; Y− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
q
2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4
þ p3

27

r
3

s
; ð19Þ

hence ðu; vÞ ¼ ð 23−Yi=μ1μ2;
2
9 þ Yi=μ1−Y

2
i =μ

2
1μ2Þ, with (i¼1,2,3).

Precisely, if Δ ¼ q2=4þ p3=27 is non-positive (positive), which
implies −μ21μ

2
2 þ 4μ1μ22−18μ1μ2 þ 4μ21μ2 þ 27 non-positive (posi-

tive), then three (only one) real solutions are created. Let us set

U ¼ u−u; V ¼ v−v; ð20Þ

then, the perturbation equations associated to (2) are given by

∂tU ¼ −α1U þ α1μ1ð1−2vÞV þ γ11ΔU þ γ12ΔV−α1μ1V
2

∂tV ¼ α2μ2ð1−2uÞU−α2V þ γ21ΔU þ γ22ΔV−α2μ2U
2:

(
ð21Þ

Denoting by

f ðU;V Þ ¼−α1μ1V
2; gðU;VÞ ¼−α2μ2U

2

a11 ¼ −α1; a22 ¼ −α2
a21 ¼ α2μ2ð1−2uÞ; a12 ¼ α1μ1ð1−2vÞ

8><
>: ð22Þ
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