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a b s t r a c t

In this paper, the influence of one-sided foundation on the unilateral buckling behavior of laminated
composite orthotropic plates is investigated under compressive load. Derivation of governing equations
is based on Kirchhoff's hypotheses and the principle of minimum total potential energy. The solutions are
performed by the hierarchical Rayleigh–Ritz (HRRM) and finite element methods (HFEM) and are
compared. Most of previous research studies on the unilateral buckling of plates are limited to single-
layer plates. The results show that unsymmetric lamination experiences lower critical loads than those of
symmetric lamination due to the existence of extensional–bending coupling in unsymmetric laminated
sequencing schemes. Influences of aspect ratio, fiber orientation, the number of plies, Young's modulus
ratio, and different boundary conditions on the unilateral buckling load are examined. The numerical
results are validated with previous works studying unilateral buckling of single-layer plates resting on
one-sided foundation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Plates, as one of the most commonly used structural elements
of mechanical systems and load-bearing structures, are among the
most important structural parts. They have the widest utility in
structural, mechanical, and aerospace engineering, for building
flexible structures, such as aircraft, spacecraft, and marine struc-
tures. From a mechanical point of view, whenever a plate is
subjected to compressive in-plane loads and tends to go out of
the loaded plane, the buckling phenomenon has occurred.
The buckling, which occurs as a result of compressive in-plane
loads, structural defects, eccentric loads, etc., leads to structural
instability and damage to structures.

The unilateral buckling of plates is in fact a contact problem.
Plates resting on foundations, e.g., plates reinforced with concrete
beams/columns are some of the practical usages of stability
analysis studied in this research. The existence of a unilateral
constraint is enough justification for a plate to show a nonlinear
behavior. Many studies were conducted on the development of
computational and theoretical methods for the analysis of elastic
bodies in contact. In these studies, it was assumed that one of the

bodies would act as the foundation of the other one, and cohesive
forces would keep together the bodies. Therefore, since the contact
between the two bodies was known to be bilateral, formulating
the model of problem by linear differential equations was possible.
In many cases, because of the inability of a semi-rigid surface for
producing cohesion, it cannot act as a tension generating con-
straint. This kind of boundary condition is known as a unilateral
contact condition. The dual nature of the foundation and unknown
contact area between two bodies in contact would make the
problem even more complicated. Regarding these conditions, the
analysis of unilateral systems is of more numerical nature. There-
fore, the study on the unilateral buckling of plates is restricted to
the last forty years.

In 1994, Shawan and Wass [1] obtained the critical buckling
load of a rectangular elastic plate with a finite length by Galerkin's
method based on the classic plate theory and choosing an
appropriate elastic energy function for the elastic foundation.
In 1997, Smith et al. [2] studied the stability of constrained
rectangular plates under shear loading by using the Rayleigh–Ritz
method. They modeled the unilateral constraint as a one-sided
foundation and studied the behavior of plate with different
boundary conditions for a shear loading case. In 1998, Shahwan
and Wass [3] investigated the unilateral buckling of constrained
plates using Galerkin's method and considering Kirchhoff's plate
theory. They used a non-linear elastic foundation, which was
called a one-sided foundation. In 1999, Smith et al. [4] analyzed
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the stability of rectangular constrained plates by the Rayleigh–Ritz
method. They verified the simulated results by some experiments
in the same year [5]. In 2000, Bradford et al. [6] studied the
buckling of thin-walled semi-compact steel plates resting on a
rigid medium subjected to bending, compression and shear. Plates,
which experience the first yield before local buckling, are referred
to as semi-compact. In this paper based on the energy method, the
limiting depth to thickness ratios were obtained that determine
the semi-compact section classification. In 2007, Hedayati et al. [7]
investigated the stability of plates, reinforced with concrete
beams, which was one of the practical applications of a unilateral
buckling problem. They analyzed the local stability of a supporting
plate, reinforced and bolted to a concrete foundation, by using
Lagrange's multipliers for introducing the constraints and solved it
by the Rayleigh–Ritz method. They modeled the concrete support
as a one-sided foundation. In 2009, Muradova et al. [8] conducted
a number of studies on buckling of rectangular plates constrained
bi-laterally by a foundation. The foundation was modeled with two
different mechanisms of Winkler and one-sided nature. In 2011,
Ma et al. [9] accomplished a research on the buckling of an infinite

thin plate resting on a one-sided foundation subjected to shear
forces. The infinite plate was modeled as a 1D structural system. In
that study, they calculated the contact area using the concept of
lateral buckling mode functions and achieved two non-linear
governing equations for two different regions of in-contact and
non-contact areas.

Considering some challenges such as fuel economy, and reach-
ing higher speeds, an increasing interest in reducing the thickness
and weight of structural parts in aerospace, marine and automo-
tive industries has led the practitioners to replace the traditional
isotropic materials with advanced composite materials, which
have offered both higher specific strength and lower specific
weight advantages. Among different issues of advanced composite
structures, the buckling behavior of the composite laminated
plates has attracted the attention of many researchers. In general,
an analytical or exact solution of this kind of plate problem,
because of non-linear behavior, is restricted to some limited types
of boundary conditions, loadings, and layer sequence schemes.
A large body of studies in the field of analytical solutions of
laminated composite plates has been conducted by Reddy [10]. For

Nomenclature

a, b, h length, width and thickness of plate respectively
a/b aspect ratio
N number of lamina
zk thickness of the kth lamina
u; v;w displacement field components in x, y and z global

coordinate system respectively
u0; v0;w0 mid-plane displacement field components in the x, y

and z directions respectively
fεg total strain vector
fεð01Þg linear part of membrane strain vector
fεð02Þg non-linear part, the von Karman's strain vector
fεð1Þg bending strain vector
Qij;Qij the 2D-stiffness and transformed reduced stiffness of

the kth lamina
E1; E2 Young's moduli along the fiber direction and normal to

the fiber in 1–2 material coordinate system
G12 shear modulus in the 1–2 plane
υ12; υ21 Poisson's ratios in the 1–2 plane
si; εi i¼ 1;2;6 laminate stress and strain vector components
fNg total force resultant vector of in-plane stresses
fMg total moment resultant vector of out-of-plane stresses
½A�; ½B�; ½D� the extensional, bending–extensional coupling, and

bending stiffnesses matrices
φmðξ; ηÞ mth term of polynomial for out-of-plane

displacement field
n number of two-dimensional polynomial terms for out-

of-plane displacement field
ϕbðξ; ηÞ out-of-plane boundary conditions polynomial for hier-

archical Rayleigh–Ritz method
F, S, C free, simple and clamped edge boundary conditions
ξ; η dimensionless coordinates (natural coordinates)
x, y Cartesian coordinates
θ lamina fiber orientation angle with respect to x axis
fUgR plate displacement generalized coordinate vector for

hierarchical Rayleigh–Ritz method
fUge element displacement field vector for the hierarchical

finite element method
fÛgR plate total unknown coefficient vector (generalized

coordinate) for hierarchical Rayleigh–Ritz method

fÛge element unknown coefficient vector for hierarchical
finite element method

fÛg unknown coefficient vector
½N�R plate displacement field matrix for hierarchical Ray-

leigh–Ritz method
½N�FE element displacement field matrix for hierarchical

finite element method
½CM�R matrix resulting from membrane strain vector for

hierarchical Rayleigh–Ritz method
½CM�FE matrix resulting from membrane strain vector for

hierarchical finite element method
½CM� matrix resulting from membrane strain vector
½CB�R matrix resulting from bending strain vector for hier-

archical Rayleigh–Ritz method
½CB�FE matrix resulting from bending strain vector for hier-

archical finite element method
½CB� matrix resulting from bending strain vector
HiðξÞ ; i¼ 3;…; 10 hierarchical functions
HiðξÞ ; i¼ 1;2 first-order Lagrange functions
gij Hermite interpolation functions
δ Ue potential energy variations resulting from deforma-

tion of springs
δV potential energy variations in plate resulting from in-

plane loads
δU strain energy variations in laminated composite plate
δΠ total Potential energy variations
½Ke� stiffness matrix resulting from elastic foundation
X contact function
kf spring stiffness
½KT � total stiffness matrix
½Kmm� stiffness matrix resulting from membrane loads
½Kmb� stiffness matrix resulting from coupling loads
½Kbb� stiffness matrix resulting from bending loads
½KG� geometrical stiffness matrix
½H� matrix resulting from von Karman's strain
½H�FE matrix resulting from von Karman's strain for the

hierarchical finite element method
½H�R matrix resulting from von Karman's strain for the

hierarchical Rayleigh–Ritz method
½N0� matrix resulting from in-plane forces
λ critical bucking load
B.C. boundary condition
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