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a b s t r a c t

In this paper we develop Whitham's formalism of the averaged Lagrangian in the problem of Stokes
waves on the surface of a layer of ideal fluid by taking into account dispersive terms. We derive a general
expression for the Lagrangian in which Whitham's term with the non-linear frequency of narrow-band
wave trains is expressed in explicit form using derivatives of the complex amplitude phase of the first
harmonic envelope. This Lagrangian form simplifies derivation of the evolution equations as variational
equations.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Whitham's averaged Lagrangian method [1–5] is used in non-
linear wave theory to obtain evolutionary equations, together with
the multiple scales method and Zakharov's Hamiltonian formal-
ism. Whitham formulated a procedure to describe non-linear
waves using a Lagrangian expanded in terms of non-linearity
and averaged over fast oscillations. He obtained the averaged
Lagrangian for waves on the surface of a ideal liquid [2]. The focus
of that work was on weak non-linearity and not dispersion. Thus,
the Lagrangian obtained contains only an expansion in powers a2

and a4 of the amplitude a of the complex-valued amplitude of
envelope A¼ a expðiϑÞ of the fundamental harmonic of the free
surface elevation, and does not include derivatives of a for the
coordinates [2]. The derivatives of ϑ in the Lagrangian can be
obtained, albeit implicitly, by means of the functions of coordi-
nates ωðx; tÞ, kðx; tÞ.

Owing to the absence of derivatives of a, variational equation
with respect to a give the first correction to the dispersion relation
for non-linearity (identical to coefficient by the non-linear term of
the non-linear Schrödinger equation, NSE). However, this lacks the
necessary dispersive part and an adequate combination of varia-
tion equations with respect to a and ϑ [compare Eq. (41), (42)].
Thus, the first term axx is not sufficient in the expression
ðaxx�aϑ2x þ ið2axϑx þ aϑxxÞÞexpðiϑÞ for coincidence with Axx and
the identity of this combination to NSE. As a result, coefficients
for NSEs and extensions to various waves using the averaged

Lagrangian have been derived by omitting the dispersive term of
the type Axx. This approach is based on the assumption that the
coefficient for the NSE non-linear term coincides with that for the
non-linear term of the non-linear dispersion relation and can be
obtained using a single variational equation with respect to the
amplitude a.

The method for constructing the averaged Lagrangian for
identity between the combination of the variational equations in
Whitham's theory and the NSE was extended for waves on a fluid
surface in the specific case of a basin with infinite depth [6,7].
In recent work, this extension was generalized to the case of a
basin with arbitrary depth [8]. In this case the formulas are much
more awkward because of the dependence of all values on the
layer thickness. Moreover, the averaged Lagrangian obtained
depends on new functions—the amplitudes of the zero harmonics
of the velocity potential and surface elevation—in addition to the
complex-valued amplitude of the fundamental harmonic A.
The corresponding variational equations lead to a system of three
evolutionary equations for these variables, the Benney–Roskes
equations [9] instead of the NSE for A. These extensions have
shown that the dispersive terms of the averaged Lagrangian must
be taken into account. The solution proposed for this problem
consists of (i) addition of supplementary trial functions and (ii)
consideration of the slow dependence of the amplitudes of
harmonics on x and t.

However, the only explicit forms for the complex-valued
amplitude of envelope A in the Lagrangian are derivatives of a,
and derivatives of the phase ϑ are only included implicitly through
the functions ωðx; tÞ and kðx; tÞ [6–8]. Therefore, a and ϑ are not
treated equally. The aim of the present study was to introduce
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derivatives of the phase ϑ into the Lagrangian instead of ωðx; tÞ and
kðx; tÞ without loss of precision. Besides allowing parity between a
and ϑ, this simplifies derivation of the evolution equations from
this Lagrangian.

2. Formulation of the problem for waves on a fluid surface

2.1. Luke's Lagrangian

According to the Hamilton principle, the Lagrangian for waves
on a fluid surface is equal to the difference between the kinetic
and potential energies of the fluid. The boundary conditions are
introduced by the constraints [10]

L¼
Z ηðx;tÞ

�h

1
2

φ2
x þ φ2

y

� �
�gy

� �
dyþ constraints; ð1Þ

where ηðx; tÞ is a profile of the fluid surface (a wave), φ is the fluid
velocity potential, x and y are the horizontal and vertical coordi-
nates, respectively, h is the fluid depth, and g is gravitational
acceleration. Luke demonstrated that for a vortex-free fluid, the
following more convenient form of the Lagrange function can be
used instead of (1) [10]:

L¼
Z ηðx;tÞ

�h
φt þ

1
2

φ2
x þ φ2

y

� �
þ gy

� �
dy; ð2Þ

provided that averaging is carried out over the period of fast
oscillations.

2.2. Expansion of the trial functions for Stokes waves and Lagrangian
calculation

In the linear approximation, the equations of motion for a wave
on the surface of an ideal fluid allow harmonic waves ηðx; tÞ
¼ εa cos θ0; θ0 ¼ k0x�ω0t for the free surface elevation and
φðx; y; tÞ ¼ εðψ þ Af 1ðyÞ sin θ0Þ; f 1ðyÞ ¼ coshðk0ðyþ hÞÞ for the velo-
city potential, where a, A, ψ , wavenumber k0 and frequency ω0 do
not depend on the coordinates. Taking into account the first non-
linear terms in the equations of motion leads to the appearance of
zero and second harmonics, and to slow dependence of all
amplitudes and k and ω on the coordinates

ηWh ¼ εa cos θ þ ε2ðbþ a2 cos 2θÞ; ð3Þ

φWh ¼ εðψ þ Af 1ðyÞ sin θÞ þ ε2A2f 2ðyÞ sin 2θ; ð4Þ

f 2ðyÞ ¼ coshð2k0ðyþ hÞÞ;
θ¼ kðx; tÞx�ωðx; tÞt:
Here b is the zero harmonic of the wave profile and ψ is the zero
harmonic of the velocity potential, which both slowly vary in time
and space x, similar to the amplitudes of other harmonics, and
describe the modulations of fast oscillations. Eqs. (3) and (4) were
used by Whitham as trial functions [2,5], but the slow dependence
of amplitudes A and A2 on coordinates is not taken into considera-
tion [2, Eq. (14)]).

We introduce the rapid oscillations expiðk0x�ω0tÞ in (3) expli-
citly with the aim of applying the averaged Lagrangian to con-
struct variational equations describing the slow evolution the
amplitude of the oscillations:

aðx; tÞ cos ðkðx; tÞx�ωðx; tÞtÞ ¼ 1
2Aðx; tÞeiðk0x�ω0tÞ þ c:c:;

where Aðx; tÞ ¼ aðx; tÞexpiϑðx; tÞ is the complex-valued amplitude
with modulus aðx; tÞ and phase

ϑðx; tÞ ¼ ðkðx; tÞ�k0Þx�ðωðx; tÞ�ω0Þt ð5Þ
of the envelope of the fundamental harmonic of the rapidly
oscillating carrier wave η with internal filling expiðk0x�ω0tÞ.

The first improvement to Whitham's theory takes into account
the corrections δ1 and δ2 to the fundamental harmonics in the trial
functions. These corrections have the same order of magnitude ε2

that is also the second harmonic [11]:

η¼ ηWh þ δ1; δ1 ¼ ε2ð ~a sin θ þ ~~a cos θÞ; ð6Þ

φ¼ φWh þ δ2; δ2 ¼ ε2f 3ðyÞð ~A cos θ þ ~~A sin θÞ;

f 3ðyÞ ¼ h tanh k0h coshðk0ðyþ hÞÞ�ðyþ hÞsinhðk0ðyþ hÞÞ: ð7Þ

The vertical dependence of the correction δ2 for the velocity
potential on f 3ðyÞ is noted from the solution of Laplace's equation
for φ, taking into account the introduction of slow coordinates and
the representation of φ in the form of a series [12,13]. Moreover,
the coefficient f 3ðyÞ in δ2 is chosen in line with the limiting case of
infinite depth [12].

For completeness of the trial functions, the terms ~~a cos θ in (6)
and ~~A sin θ in (7) are included. It is evident in Eqs. (25) and (27)
below that the amplitudes ~~a and ~~A are connected by derivatives of
the phase ϑ of the complex-valued envelopeAðx; tÞ ¼ aðx; tÞexpiϑðx; tÞ
of the wave η, namely, ~~a ¼�aϑt=ω0 and ~~A ¼�Aϑx. These do not
appear explicitly in the original extensions of Whitham's work [6–8],
since they contain derivatives of ϑ in the averaged Lagrangian.
Specifically, to express the averaged Lagrangian in terms of derivatives
of ϑ explicitly for consistency with a, the trial functions ~~a and ~~A in
(6) and (7) are supplemented. The amplitudes ~A, ~~A , ~a, and ~~a of the
corrections δ1 and δ2 should be determined according to the variation
of the Lagrangian with respect to them.

The second revision of Whitham's theory considers the slow
dependence of A, A2, ~A and ~~A on x; t in (2). We take them into
account in the derivatives φt and φx of (7) as corrections of
magnitude Δ1 and Δ2 to the derivatives �ωφθ þ ε2ψ t and kφθ þ
ε2ψx [2,5]:

φt ¼�ωφθ þ ε2ψ t

þ Δ1; Δ1 ¼ εðφAAt þ φA2
A2t þ φ ~A

~At þ φ ~~A
~~AtÞ; ð8Þ

φx ¼ kφθ þ ε2ψx þ Δ2; Δ2 ¼ εðφAAt þ φA2
A2x þ φ ~A

~At þ φ ~~A
~~AtÞ: ð9Þ

This extension Whitham's method previously was used to obtain
evolutionary equations by the variational procedure for waves in a
collisionless plasma [14] and waves on the surface layer of a liquid
[15]. In the deep-water limit (in which ψ and b vanish), both
extensions were used by Yuen and Lake [6,7].

Substitution of (8) and (9) and φy into (2) gives the following
expression for the Lagrangian:

L¼� ω�ε2k0ψx
� � Z η

�h
φθ dyþ

1
2

Z η

�h
k2φ2

θ þ φ2
y

� �
dy

þ
Z η

�h
Δ1 þ k0φθΔ2 þ ε2ψxΔ2 þ

1
2
Δ2

2

� �
dyþm3 þm4; ð10Þ

m3 ¼ ε2ðψ t þ 1
2 ε

2ψ2
x Þ hþ ηð Þ; m4 ¼ 1

2g η2�h2
� �

:

Eq. (10) has a new term (third integral) that takes into account
the dependence of A, A2, ~A and ~~A on the coordinates, as well as the
corrections δ1 (6) in η and δ2 (7) in φ. In the term k0φθΔ2 (as Δ2∼ε)
and hereafter, the wavenumber k is replaced by the wavenumber
k0 for high-order terms in ε.

The trial functions η and φ of the Lagrangian contain supple-
mentary amplitudes ~~a and ~~A according to (6) and (7) and this
leads to explicit occurrence of ϑx and ϑt in (10) by replacing ω and
k according to (11).
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