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a b s t r a c t

An interpolating spline-based approach is presented for modeling multi-flexible-body systems in the
divide-and-conquer (DCA) scheme. This algorithm uses the floating frame of reference formulation and
piecewise spline functions to construct and solve the non-linear equations of motion of the multi-
flexible-body system undergoing large rotations and translations. The new approach is compared with
the flexible DCA (FDCA) that uses the assumed modes method [1]. The FDCA, in many cases, must resort
to sub-structuring to accurately model the deformation of the system. We demonstrate, through
numerical examples, that the interpolating spline-based approach is comparable in accuracy and
superior in efficiency to the FDCA. The present approach is appropriate for modeling flexible mechanisms
with thin 1D bodies undergoing large rotations and translations, including those with irregular shapes.
As such, the present approach extends the current capability of the DCA to model deformable systems.
The algorithm retains the theoretical logarithmic complexity inherent in the DCA when implemented in
parallel.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Modeling flexibility in the dynamic simulation of multibody
systems often becomes unavoidable when its effects are signifi-
cant, e.g., systems including articulated elastic objects such as bars,
beams, shafts, and belts in application areas such as robotics and
micro-electromechanical systems (MEMS). The goal of these
simulations is to capture the essential dynamics of the system
arising from the large overall motion, often regarded as a rigid
body motion associated with the kinematic joints between the
flexible bodies, and that from the elastic deformation of the
individual components of the system. In such simulations, one
often encounters situations where computational efficiency as
well as model accuracy is important and a balance between the
two is required. In many cases, it may be useful to employ
multibody methods for computational cost savings, kinematic
exactness, and ease in handling large rotations and translations.
Using finite element based models may significantly increase
computational cost.

A number of approaches have been developed for simulating
flexible bodies that also incorporate the effects of gross rigid body
motion. Some of the widely adopted approaches include the
floating frame of reference formulation (FFR) [2,3], absolute nodal
coordinate formulation (for beam and plate type elements) [4,5],
and other finite element (FE) based techniques [6–9]. For a brief
review and an extensive literature survey on different computa-
tional strategies in flexible multibody systems, the reader is
referred to [10]. Regardless of the method, computational cost
increases with increasing complexity of the system. Therefore, the
development of computationally efficient methods which are also
accurate has always been an important topic of research in
multibody dynamics. In this paper, we present a new multibody
method that incorporate interpolating spline in a divide-and-
conquer framework. The present algorithm provides an efficient
approach for modeling dynamic systems employing articulated
rigid and flexible bodies undergoing large rotations and
translations.

The divide-and-conquer algorithm (DCA) was introduced by
Roy Featherstone [11] as a massively parallel, truly time optimal
multibody dynamics algorithm. The DCA is applicable to general
multibody systems and achieves logarithmic complexity
Oð logðNbÞÞ, when implemented on OðNbÞ processors [12]. Thus,
the DCA is a good candidate for situations where computational
efficiency and cost are important. Several variants of the DCA were
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developed for multibody systems with closed loops [12,13],
flexible bodies [1], control problems [14,15], and discontinuous
changes arising during simulation [16]. In this paper, we present a
DCA based efficient algorithm that utilizes the interpolating spline
functions for modeling multi-flexible-body systems. A comparison
between the spline-based approach (SDCA) and the assumed
modes method scheme is presented. The assumed mode DCA or
flexible DCA (FDCA [1]) is appropriate when dealing with bodies
with regular geometry such as straight and uniform beams whose
mode shapes have been thoroughly investigated in the literature
[17]. However, for irregularly shaped beams, the FDCA must resort
to sub-structuring in order to adequately capture the deformation
of the system [18]. The SDCA approach presented in this paper
overcomes this limitation.

Various types of approximating and interpolating spline func-
tions have found applications in a number of areas, ranging from
computer graphics to statistics and mechanics. For example, B-
splines have been extensively studied in finite element based
methods [19,20]. This is due to the computational advantages
associated with B-splines including ease of implementation and
smoothness. In multibody dynamics, the use of interpolating cubic
splines has been studied in [21,22], while others have hinted
towards their potential applications in modeling multi-flexible
body systems [23,24]. However, a detailed analysis of interpolating
spline-based algorithms is lacking, including a study of their
performance compared to traditional modeling approaches. Spline
functions are appropriate in multibody dynamics because of the
relatively small number of nodes in such simulations, as well as
their smooth, continuous and interpolating nature at these nodes.
The new spline-based algorithm developed here is restricted to
modeling multibody systems comprising thin beam like bodies
such as ropes, tubes, beams, and polymer chains. Furthermore, the
present algorithm can be used in conjunction with other DCA-
based algorithms to model systems with different types of rigid
and flexible bodies. In this work, we have provided examples
corresponding to SDCA for planar mechanisms and 1D bodies.
However, the technique may be extended to problems in higher
spatial dimensions. The results obtained with the SDCA are
compared with the method of superposed assumed modes in
FDCA and the numerical complexity of the method is studied. It is
demonstrated that the DCA based on interpolating splines pro-
vides an alternate and computationally fast method for modeling
articulated flexible bodies.

In Section 2, a brief overview of the basic DCA and interpolating
splines is presented. The derivation of DCA based spline method is
presented in Section 3. Computational complexity of FDCA and
SDCA are compared in Section 3. Finally, numerical examples and
discussions are presented in Section 4.

2. Theoretical background

In this section, we present a brief overview of the basic DCA
and interpolating splines. The computational complexity of the
FDCA and SDCA is also presented in this section.

2.1. Basic divide and conquer algorithm

Detailed derivation and analysis of the performance of the DCA
can be found in [11,12]. Here, we present the DCA in its basic form.
Consider two representative bodies, k and k+1, connected with
each other by a joint Jk. Let the points where each generic body
interacts with other bodies and the environment, be termed as
‘handles’. As an example, consider Fig. 1(a), where Hk

1 and Hk
2 are

the two handles on body k. Similarly, for body k+1, the points Hkþ1
1

and Hkþ1
2 define the position of its handles. For convenience, these

handles may correspond to the locations of the joints in a body, for
example, the joint Jk can serve as the location for the outward and
inward handles for body k and body kþ 1, respectively. The bodies
and the joints along with the constraint forces acting on the
handles are shown in Fig. 1(a).

There are two main processes in the DCA, the hierarchic
assembly and the hierarchic disassembly. In the pre-assembly
steps, the equations of motion for each body are formed at its
handles. As such, for body k the two-handle equations of motion
can be written as

Ak
1 ¼ ζk11F

k
1c þ ζk12F

k
2c þ ζk13; ð1Þ

Ak
2 ¼ ζk21F

k
1c þ ζk22F

k
2c þ ζk23; ð2Þ

In the above two equations Ak
1 and Ak

2 are the 6�1 spatial
accelerations of body k at handles Hk

1 and Hk
2, respectively.

The terms ζkij (i¼1,2 and j¼1,2,) represent the inverse inertia
terms associated with the two handles, whereas ζki3 (i¼1,2) terms
contain all the state dependent accelerations as well as the effects
of externally applied loads [12]. The two-handle equations for
body k+1 can be given by

Akþ1
1 ¼ ζkþ1

11 Fkþ1
1c þ ζkþ1

12 Fkþ1
2c þ ζkþ1

13 ; ð3Þ

Akþ1
2 ¼ ζkþ1

21 Fkþ1
1c þ ζkþ1

22 Fkþ1
2c þ ζkþ1

23 : ð4Þ
The goal of the assembly process is to combine the equations for
the successive bodies to form the equations of the resulting
assemblies. In case of body k and body k+1, the resulting assembly
is illustrated in Fig. 1(b), and the two-handle equations of motion
for the resulting assembly

Ak
1 ¼ ζk:kþ1

11 Fk1c þ ζk:kþ1
12 Fkþ1

2c þ ζk:kþ1
13 ; ð5Þ

Akþ1
2 ¼ ζk:kþ1

21 Fk1c þ ζk:kþ1
22 Fkþ1

2c þ ζk:kþ1
23 : ð6Þ

Eqs. (5) and (6) provide the spatial accelerations of the outward
handles of the sub-assembly k:k+1. The terms ζk:kþ1

ij (i¼1,2 and
j¼1,2,3) have the same meaning as before, except they now
represent the sub-assembly formed by bodies k and kþ 1. Note
that the two-handle equations of the sub-assembly are in the
same form as the equations of the constituent bodies. This process
can be repeated in a hierarchic manner for all successive bodies in
the multibody tree. This assembly process starts at the individual
body or leaf nodes. The two-handle equations for the pairs of
adjacent bodies are combined together to form the equations for
the resulting sub-assemblies. This process continues in a hier-
archic fashion until the process reaches the root or the primary
system node. At this point, the assembly process stops and the
two-handle equations of motion for the entire system are
obtained. The hierarchic disassembly begins at the primary system
node, where by using the boundary conditions, the equations of
motion for the last assembly are solved. Using this information,
the disassembly process solves the equations of the constituent
sub-assemblies. This process continues until the process reaches
the individual body nodes. At the end of the disassembly process
all unknowns (e.g., spatial constraint forces, modal generalized
accelerations, spatial constraint impulses, spatial accelerations,
jumps in the spatial velocities) for the bodies at the individual
sub-domain level of the binary tree are known. The assembly and
disassembly processes are illustrated in Fig. 2.

2.2. Spline interpolation

Spline functions are smooth piecewise interpolating curves
that have applications in disciplines including computer graphics,
numerical methods and mechanics. Various types of splines, their
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