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a b s t r a c t

We consider a quarter-plane of compressible hyperelastic material of harmonic-type undergoing finite

plane deformations. The plane is subjected to mixed (free–fixed) boundary conditions. In contrast to

the analogous case from classical linear elasticity, we find that the deformation field is smooth in the

vicinity of the vertex and is actually bounded at the vertex itself. In particular, the normal displacement

remains positive eliminating the possibility of material interpenetration. Finally, explicit expressions

for Cauchy and Piola stress distributions are obtained in the vicinity of the vertex.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Stress analysis in the vicinity of corners and near points at which
prescribed boundary data change type (for example, from Dirichlet
to Neumann) has gained considerable attention in the literature
(see, for example, [1–5]). In most of the aforementioned studies,
stresses obtained within the context of the classical (linear) theory
of elasticity exhibit singularities indicating either the presence of
regions of high stress concentration or a break-down in the govern-
ing mathematical model. In addition, it is also found that the
corresponding displacement fields suffer from oscillatory singula-
rities which further lead to physically inadmissible phenomena such
as wrinkling of free surfaces and material interpenetration. In an
attempt to address the deficiencies in the classical models, more
recent analyses have sought to incorporate the effects of finite
strain, for example, on the corresponding singular fields near a
corner and/or interface crack-tip [6,7]. In the case of mixed bound-
ary-value problems in finite elastostatics, Knowles and Sternberg [8]
have shown that for harmonic materials (see, for example, John [9],
Ogden and Isherwood [10] and the references contained therein),
the oscillatory singularities arising at the points on the boundary
where the data change type, disappear completely.

In this paper, we continue the work of Knowles and Sternberg
and consider the local finite-strain analysis in the vicinity of the
corner of a quarter-plane of compressible hyperelastic material of
harmonic-type undergoing finite plane deformations (see Fig. 1).
The plane is subjected to mixed (free–fixed) boundary conditions.
We show that, in contrast to the analogous results obtained within

the linear theory of elasticity, the deformation field remains
bounded at the vertex and exhibits smooth behavior in its vicinity.
In particular, explicit conditions are obtained which guarantee that
the corresponding normal displacements are always positive: this
excludes the (unrealistic) possibility that the body can penetrate
into the fixed lower half plane. With respect to local stress
distributions, we note that certain components of stress are free of
singularities, while others remain unbounded at the vertex. This
could be explained by the sudden change in boundary data type at
the corner. To analyze this further, we undertake a brief examina-
tion of the same physical problem but with fixed–fixed boundary
conditions. Finally, explicit expressions for deformations and stres-
ses (Cauchy and Piola) in the vicinity of the corner are presented.

2. Notation and prerequisites

In this section, we present the basic formulation of a harmonic
material subjected to plane - strain deformations. For more
details, see Knowles and Sternberg [8]. Let z¼ x1þ ix2 be the
initial coordinates of a material particle in the undeformed
configuration and wðzÞ ¼ y1ðzÞþ iy2ðzÞ, the corresponding spatial
coordinates in the deformed configuration. The components of
the deformation gradient tensor are given by:

Fij ¼
@yi

@xj
¼ yi,j, i,j¼ 1,2

and we define the scalar invariants as

I¼ l1þl2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FijFijþ2J

q
, J¼ l1l2 ¼ det½Fij�40,

where l1 and l2 are principal stretches.
Harmonic materials proposed by John [9] are characterized by

the following strain-energy density W defined per-unit-area of
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the reference configuration:

W ¼ 2m½FðIÞ�J�, ð1Þ

where m is a positive material constant and F(I) is a (scalar)
material function of the invariant I. Following [8], The Piola stress
and the (symmetric) actual Cauchy stress components can be
expressed as follows:

s12þ is22 ¼ 2m F 0ðIÞ

I
ðw,2þ iw,1Þ�iw,1

� �
,

s11þ is21 ¼ 2mi w,2�
F 0ðIÞ

I
ðw,2þ iw,1Þ

� �
, ð2Þ

t11þt22 ¼ 2m IF 0ðIÞ

J
�2

� �
,

t11�t22þ2it12 ¼ 2m F 0ðIÞ

IJ
ðw2

,2þw2
,1Þ, ð3Þ

where F 0ðIÞ ¼ dF=dI and I and J are given accordingly by,

I¼ jw,2þ iw,1j, J¼�Imjw,1w,2 j: ð4Þ

Also, the basic equilibrium equation has the following form (see
Ru [11]):

F 0ðIÞ

I
ðw,2þ iw,1Þ ¼F0ðzÞ, ð5Þ

where F0ðzÞ is an analytic function and the overbar ‘ ’ denotes the
complex conjugate. For the present local singularity analysis near
the corner (where the value of I is unbounded), we follow [8] and
assume that the asymptotic form of F(I) is described by the
expression

F 0ðIÞ

I
¼ aþ b

I
þF0ðIÞ, I-1, a¼ 1, �1obo0, ð6Þ

where F0ðIÞ is a higher-order small term in the vicinity of the
vertex such that

IF0ðIÞ-0, I-1:

Throughout the analysis we shall employ this particular asymp-
totic form for F(I).

3. The local singular field near a corner ða¼ 1Þ

Let us now consider a quarter - plane fixed at y¼ 0 and with
stress-free boundary at y¼ p=2 (see Fig. 1). We assume that the
general solution takes the following form:

fðzÞ ¼ AzrþCzrlnzþf0, cðzÞ ¼ BzrþDzrlnzþc0, ð7Þ

where r is an unknown real number, and A, B, C, D,f0 and c0 are
complex constants to be determined.

Near the vertex, where the value of I is unbounded, to second
order, F 0ðIÞ=I¼ 1þb=I . Substituting into the equilibrium equation (5)

and neglecting all higher-order small terms, we obtain

w,2þ iw,1 ¼
F0ðzÞ

1þb=I
¼

F0ðzÞð1�b=IÞ

1þðb=IÞ2
�F0ðzÞ 1�

b
I

� �
: ð8Þ

For the present case, all leading-order singular terms are of the form
lnr (see (7), independent of y ) and therefore,

�
b
I
F0ðzÞ ¼ CþO

1

lnr

� �
,

where C is an arbitrary constant. Consequently, to second-order
approximation, the equilibrium equation (8) becomes

w,2þ iw,1 ¼F0ðzÞþC,

and the general solution of w can be expressed in terms of two
analytic functions ðfðzÞ,cðzÞÞ as:

wðzÞ ¼fðzÞþcðzÞ, fðzÞ ¼
1

2i
FðzÞþ

Cz

2i
: ð9Þ

Further, substituting the above into (5), we obtain the following
expressions for I and J:

I¼ 2jf0ðzÞj, J¼ ½f0ðzÞf0ðzÞ�c0ðzÞc0ðzÞ� ¼ jf0ðzÞj2�jc0ðzÞj2: ð10Þ

Now, at the fixed boundary (y¼ 0), we obtain, from (9), that

wðzÞ ¼fðzÞþcðzÞ ¼ xþx0, at y¼ 0, ð11Þ

where x0 is an arbitrary real number. In addition, substituting the
expression for F 0ðIÞ=I (to second-order approximation) into the second
equation of (2) yields, at the stress-free boundary ðy¼ p=2Þ:

s11þ is21 ¼ 2m w,1�
2b
I
f0ðzÞ

� �
¼ 0þ0i, at y¼ p=2: ð12Þ

By substituting the expressions for fðzÞ and cðzÞ in (7) into (11) and
further writing z¼ eiy, we obtain (at y¼ 0)

ðAþBÞrrþðCþDÞrrln rþf0þc0 ¼ rþr0, _r¼ x at y¼ 0:

ð13Þ

Comparing coefficients on both sides of Eq. (13) yields

ðCþDÞrrlnr¼ 0, r¼ ðAþBÞrr, r0 ¼f0þc0 ðRigid body motionÞ:

Therefore, we have that

CþD ¼ 0, AþB ¼ 1, r¼ 1, f0þc0 ¼ 0: ð14Þ

Further, in view of (10) and (11), the stress-free boundary condition
(12) can be re-written as:

f0ðzÞþc0ðzÞ�
2b

2jf0ðzÞj
f0ðzÞ ¼ 0:

From (7) and (14), the above becomes

1þ ipCþ
bðAþCþCðlnrþ ipl2ÞÞ

jAþCþCðlnrþ ipl2Þj
¼ 0, at y¼

p
2
:

Neglecting all higher - order small terms (e.g. A=lnr� 0 ) and further
noting that lnro0 near the corner, we obtain from the above that

1þ ipC�
bC

jCj
¼ 0,

which determines the unknown complex constant (C ¼ C1þ iC2) in
terms of b:

C1 ¼ 7
b
p

ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

q
, C2 ¼

1�b2

p , �1obo0: ð15Þ

We mention here that, as noted in the next section, C1o0 (i.e.

C1 ¼ ð�b=pÞ
ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

q
) seems a reasonable choice guaranteeing J40

near the corner field. Finally, the second-order local solution in the

Fig. 1. Schematic of the problem.
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