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Recent studies on localized bulging in inflated membrane tubes have shown that the initiation pressure

for the onset of localization is determined through a bifurcation condition. This kind of localization has

also been shown to be much more sensitive to geometrical and material imperfections than classical

sub-critical bifurcation into periodic patterns. We use these results to show that the initial formation of

aneurysms in human arteries may also be modeled as a bifurcation phenomenon. This bifurcation

interpretation could provide a theoretical framework under which different mechanisms leading to, or

reducing the risk of, aneurysm formation can be assessed in a systematic manner. In particular, this

could potentially help in assessing the integrity of aneurysm repairs.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

An aneurysm is a localized, blood-filled balloon-like bulge of a
blood vessel. As the size of an aneurysm increases, there is an
increasing risk of rupture, resulting in severe hemorrhage, other
complications or even death. Aneurysm formation has broadly
been associated with hereditary predisposition, old age and
hypertension, and more specifically with defects in extracellular
matrix maturation, increased degradation of elastin and collagen,
aberrant cholesterol homeostasis, or enhanced production of
angiotension peptides. However, how such factors manifest
themselves in changing the mechanical behavior of arteries
before aneurysm formation is still not fully understood. Existing
studies in the bio-mechanical community have largely focussed
on modeling the material properties of mature aneurysm tissues
and the growth of aneurysms when they have already formed;
see, e.g., Humphrey and Rajagopal [1], Venkatasubramaniam et al.
[2], Watton et al. [3], Baek et al. [4,5], Vande Geest et al. [6], Vorp
[7], Watton and Hill [8], and the references therein. Such studies
are obviously important in guiding a clinician when to intervene
when an aneurysm has been diagnosed. Our current study,
however, is focussed on understanding the process leading to
the initial formation of an aneurysm.

The geometrical similarity between a localized bulge in an
inflated hyperelastic membrane tube and an arterial aneurysm is
obvious, but the former problem is much better understood
thanks to a large number of experimental, numerical and analy-
tical studies, and the absence of uncertainty in the material

modeling. When a hyperelastic membrane tube is inflated by
pumping in air or water, a localized bulge will form when the
internal pressure reaches a certain critical value. Once a bulge has
been initiated, its early stage of growth is highly unstable, which
takes place at decreasing pressure (and associated reduction of
radius away from the center of the bulge). For almost all rubber-
like materials, growth will stop when the bulge reaches a so-
called Maxwell state which is stable. Further inflation will force
the bulge to spread in both directions and will take place at a
constant Maxwell pressure and constant maximum radius. The
earliest documented observation of localized bulging in inflated
membrane tubes seems to have been by Mallock [9]. For a
selection of experimental, numerical and analytical studies, we
refer to Yin [10], Chater and Hutchinson [11], Kyriakides and
Chang [12,13], and Shi and Moita [14]. Although this problem has
been loosely referred to as a stability/bifurcation problem, its
precise stability/bifurcation nature was not fully understood until
very recently; see Fu et al. [15]. In this paper, the localized bulging
was recognized as a non-linear bifurcation problem (the corre-
sponding linear bifurcation analysis incorrectly predicts the
bifurcation mode as a uniform radial expansion), and it was
shown that the initiation pressure may or may not equal the
limiting pressure associated with uniform inflation depending on
end conditions. Equality holds if, for instance, the ends are closed
and any external axial force is fixed, but in the case of open ends
localized bulging would occur before the limiting pressure is
reached. Characterization of the entire inflation process and its
stability was carried out in two subsequent papers [16,17]. In a
more recent paper [18] it was further shown that the initiation of
localized bulging in inflated membrane tubes is more sensitive to
material and geometrical imperfections than classical sub-critical
bifurcations into sinusoidal patterns. The latter obeys Koiter’s
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two-thirds power rule [19,20] whereas the former obeys a square
root rule. For instance, a localized wall thinning that corresponds
to a 10% maximum wall thickness reduction can easily induce a
19% reduction in the critical circumferential stretch. Since for
arteries the pressure is an exponential function of circumferential
stretch, such a 19% reduction in stretch can reduce the critical
pressure by many orders of magnitude. Such severe imperfection
insensitivity has the potential to bring the critical pressure down
to physiologically possible values and is crucial to our argument
in the present paper.

It is well known that arteries are inelastic: they show hyster-
esis when subjected to cyclic loading and unloading, and also
exhibit typical viscoelastic behavior (i.e. stress relaxation at a
constant strain and strain creep at a constant stress), but for many
practical purposes, including ours in the current paper, it suffices
to model them as non-linearly elastic and anisotropic. There is,
however, a major difference between the behavior of rubber-like
materials and that of arteries, namely that for the former the
strain-energy function can be accurately described by an alge-
braic function (see, e.g., Ogden [21]), whereas for the latter the
behavior is typically exponential (see, e.g., Fung et al. [22]).
Furthermore, arteries have a layered structure and behave aniso-
tropically, and as a result there is much uncertainty in their
mathematical modeling. Because of these differences, when
aneurysm formation is interpreted as a bifurcation phenomenon
it is not immediately clear whether the bifurcation condition has
any solutions at all. Then to demonstrate that aneurysm forma-
tion can indeed be modeled as a bifurcation phenomenon, we
need to first choose an appropriate material model, and then to
verify that bifurcation cannot only take place but also can be
achieved at physiologically possible pressure values. A number of
material models for arteries have been proposed in recent years;
we refer to Humphrey [23] and Holzapfel and Ogden [24] for
comprehensive reviews. In this paper, we select two representa-
tive material models. The first is the multi-layer structural model
of Holzapfel et al. [25] which also gives material parameter data
for carotid arteries of a young rabbit. The second is the single-
layer arterial model proposed by Choi and Vito [26] with data
provided by Vande Geest et al. [6] for a group of healthy but
elderly human aortic arteries. It is known that aneurysms are rare
in animals and more so among young animals, and that aneur-
ysms can be induced by pathological changes in elderly humans.
Our challenge is to show that the bifurcation interpretation can
indeed capture, at least qualitatively, these basic facts.

The rest of this paper is organized as follows. In the next
section, we summarize Holzapfel et al.’s [25] multi-layer struc-
tural model and show that for axisymmetric deformations,
provided each layer in an artery is hyperelastic, the composite
artery is necessarily hyperelastic and we give the effective strain-
energy function. This result paves the way for the application of
Fu et al.’s [15] bifurcation condition which we briefly derive in
Section 3 for completeness. We show that the bifurcation condi-
tion reduces to a determination of the zeros of the expression
(3.11) by virtue of a local analysis of the ordinary differential
equation (3.10). This bifurcation condition is then applied in
Section 4 to the two material models mentioned in the previous
paragraph. The paper is concluded with a summary and some
additional remarks.

2. Governing equations

Healthy arteries are composed of three clearly defined layers:
the intima (the innermost layer), the media (the middle layer) and
the adventitia (the outer layer). Each layer of the arterial wall may
be considered as a composite reinforced by two families of fibers

arranged in symmetrical helices [27]. With incompressibility
assumed, the strain-energy function C for each layer is a function
of the seven invariants I1,I2,I4,I5,I6,I7,I8 defined by [28]

I1 ¼ trC, I2 ¼
1
2ðI

2
1�trC2Þ, I4 ¼M � CM, I5 ¼M � C2M,

I6 ¼M0 � CM0, I7 ¼M0 � C2M0, I8 ¼M � CM0, ð2:1Þ

where C is the right Cauchy-Green strain tensor, and M and M0 are
the directions of the two families of fibers in the reference
configuration. The Cauchy stress tensor is then given by

s¼�pIþ2C1Bþ2C2ðI1B�B2Þþ2C4m�m

þ2C5ðm� BmþBm�mÞþ2C6m0 �m0

þ2C7ðm
0 � Bm0 þBm0 �m0ÞþC8ðm�m0 þm0 �mÞ, ð2:2Þ

where p is the pressure associated with the constraint of incom-
pressibility, B is the left Cauchy-Green strain tensor,
Ci ¼ @C=@Ii ði¼ 1,2; :::;8Þ, and m¼ FM,m0 ¼ FM0 with F being the
deformation gradient.

We shall choose a common cylindrical polar coordinate sys-
tem, with basis vectors er ,ey,ez, to describe vectors and tensors in
both the current and reference configurations. Thus, we may
write

M ¼ cosfeyþsinfez, M0 ¼ cosfey�sinfez, ð2:3Þ

where f is the constant angle between the collagen fibers and the
circumferential direction.

We consider the problem of axisymmetric inflation of a
straight artery that has constant wall thickness H and uniform
mid-plane radius R before inflation. Thus, in general, the axisym-
metric deformed configuration may be described by

r¼ rðZÞ, z¼ zðZÞ, ð2:4Þ

where Z and z are the axial coordinates of a representative
material particle before and after inflation, respectively, and r is
the mid-plane radius after inflation.

Since the deformation is axially symmetric, the principal
directions of stretch coincide with the lines of latitude, the
meridian and the normal to the deformed surface. Denoting the
unit vectors in these principal directions by e1,e2,e3, respectively,
we have

e1 ¼ ey, e2 ¼ cosgezþsinger , e3 ¼�singezþcosger , ð2:5Þ

where g is the angle between the meridian and the z-direction;
see Fig. 1. The associated principal stretches are given by

l1 ¼
r

R
, l2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r02þz02

p
, l3 ¼

h

H
, ð2:6Þ

where h denotes the deformed wall thickness and the primes
indicate differentiation with respect to Z. In the following analy-
sis, we use R as the unit of length, which is equivalent to setting
R¼1.

The deformation gradient F may be written as

F ¼ l1e1 � eyþl2e2 � ezþl3e3 � er : ð2:7Þ

Internal pressure P

σ2

σ2

ds

z (Z)dZ

r (Z) dZγ

Fig. 1. Axisymmetric deformation of an artery.
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