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a b s t r a c t

A frictional spring-block system has been widely used historically as a model to display some of the

features of two slabs in sliding frictional contact. Putelat et al. (2008) [7] demonstrated that equations

governing the sliding of two slabs could be approximated by spring-block equations, and studied

relaxation oscillations for two slabs driven by uniform relative motion at their outer surfaces,

employing this approximation. The present work revisits this problem. The equations of motion are

first formulated exactly, with full allowance for wave reflections. Since the sliding is restricted to be

independent of position on the interface, this leads to a set of differential-difference equations in the

time domain. Formal but systematic asymptotic expansions reduce the equations to differential

equations. Truncation of the differential system at the lowest non-trivial order reproduces a classical

spring-block system, but with a slightly different ‘‘equivalent mass’’ than was obtained in the earlier

work. Retention of the next term gives a new system, of higher order, that contains also some explicit

effects of wave reflections. The smooth periodic orbits that result from the spring-block system in the

regime of instability of steady sliding are ‘‘decorated’’ by an oscillation whose period is related to the

travel time of the waves across the slabs. The approximating differential system reproduces this effect

with reasonable accuracy when the mean sliding velocity is not too far from the critical velocity for the

steady state. The differential system also displays a period-doubling bifurcation as the mean sliding

velocity is increased, corresponding to similar behaviour of the exact differential-difference system.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Frictional spring-block systems have been studied for decades
in search of a better understanding of friction. For practical and
engineering interests, they also constitute good mechanical ana-
logues of experimental apparatus, machines and tools. Moreover,
they are useful ‘‘toy model’’ non-linear systems for studying the
dynamics of frictional stick-slip oscillations [1,2] which represent
a possible mechanism responsible for the recurrence of earth-
quakes [3]. One could, however, argue legitimately that a spring-
block system cannot ‘‘correspond closely to an actual fault’’ [2]
whose behaviour depends on continuum mechanics fields.

In this paper, we present a method for reducing the dynamics
of a frictional elastic continuum to the dynamics of a sliding block
pulled with a generalised Kelvin–Voigt model (a spring and a
dashpot in parallel) when elastic radiation and boundary reflec-
tion are accounted for. This particular aspect concerns only the

modelling of the stress waves and is independent of the model of
friction that is employed to complete the formulation. We thus
propose a systematic method for deriving sliding-block mechan-
ical analogues of frictional elastic continua that are useful for the
investigation of the non-linear dynamics of sliding friction and
the states of erratic sliding of frictional systems, and may provide
new insight into the episodic recurrence of earthquakes and
aftershocks.

Earthquakes are recurrent and aperiodic, while basic stick-slip
oscillations are periodic. Experimentally, irregular slip patterns
have been observed at very low driving velocities for which
elastic radiation is commonly disregarded [4–6]. We will show
that taking into account elastic radiation allows the appearance of
complex slip dynamics even for low driving velocities.

Fully developed stick-slip oscillations are relaxation oscilla-
tions that comprise a long quasi-stationary phase1 during which
the stress builds up linearly in time followed by a sudden and
short harmonic slip phase accompanied by a stress drop releasing
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1 In this paper we define the ‘‘quasi-stationary phase’’ as the part of a periodic

orbit on which the acceleration is negligible, reserving ‘‘quasi-static’’ for a part of

an orbit, or a system, in which elastic wave propagation is disregarded.
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the elastic energy stored during the first phase [2,7]. Although
Coulomb’s model of friction captures the essence of stick-slip
oscillations from the difference in values between the static and
dynamic coefficients of friction [8], it cannot account for the
existence of a velocity-dependent critical value of the stiffness for
the appearance of stick-slip and the increase of stick-slip ampli-
tude for decreasing stiffness or velocity induced by slip memory
effects [9]. These experimental observations were reproduced
theoretically, as we recall below, only from the concept of rate-
and-state friction proposed by Ruina [4] and Rice and Ruina [10]
following Dieterich [11].

Rate-and-state friction is a general framework for the quanti-
tative description of friction laws in which the frictional shear
stress t is determined by relations of the type

t¼ Fðv,f;sÞ and _f ¼�Gðv,f;sÞ, ð1Þ

where v and s denote the interfacial slip rate and normal stress
while f represents an internal variable characterising the state of
resistance to sliding of the interface. The evolution law (1)2

models the memory effects typical of the response of frictional
interfaces to sudden velocity changes. The instantaneous fric-
tional response described by the law (1) implies the steady-state
friction law

t¼ FssðV ;sÞ, ð2Þ

obtained for slipping at constant rate v¼V and constant inter-
facial state f¼fssðV ;sÞ given implicitly by solving GðV ,fss;sÞ ¼ 0.
Accounts of the phenomenological description and geophysical
applications of such laws can be found in the review articles of
Marone [12] and Scholz [13], while the present state of our physical
understanding of such laws and their microphysical foundations
are reviewed and discussed in Baumberger and Caroli [14] and
Putelat et al. [15].

Phenomenologically, the concept of rate-and-state friction
assumes that a reference value of the friction coefficient asso-
ciated with a reference slip rate Vn is modified by correction terms
that depend on the velocity and the interfacial state. It is
supposed that the interfacial state relaxes to a steady state after
sliding over a length characterised by a memory length L. A
common realisation of such friction laws is the Dieterich ageing
law defined by

t¼ ½anþa lnðv=VnÞþb lnðf=fnÞ�s with _f ¼ 1�vf=L, ð3Þ

where fn ¼ L=Vn is the steady-state reference value of the inter-
facial state. Typical values for the material parameters are given
in Table 1. From a microphysical point of view the memory length
is usually thought to correspond to the slip distance required for
the rejuvenation of the population of interacting microasperities
which constitute the interface topography [11,14,16]. Besides, in
the thermodynamic theory for slip events based on the Eyring
transition-state theory of rate processes [15,17,18], we note that
the reference slip rate Vn can be identified as the product of a
reference frequency of slip events and a characteristic length
corresponding to the average separation between the energy barriers
to overcome in relation to some thermal activation mechanism. We
finally note that the analytical form of the state evolution law is

empirical and is still open to discussion (see e.g. [15]). We will use the
law (3) to illustrate numerically the analyses reported in this paper.

Within this rate-and-state framework, consider a block of
mass M pulled with a constant speed V by a spring of stiffness k.
When friction is velocity-weakening, stick-slip motion arises from
a Hopf bifurcation located at a critical value kc of the stiffness
given by

kc ¼�GfF 0ssþMo2
c , ð4Þ

where

o2
c ¼�G2

fF 0ss=Fv, ð5Þ

denotes the critical frequency of oscillations [5,10,17,19]. The
critical stiffness and frequency depend only on the velocity-
dependent frictional properties of the interface, conveyed by the
slope F 0ssðVÞo0 of the steady-state friction law and the partial
derivatives Fv � @F=@v and Gf � @G=@f40 evaluated at the steady
state ðV ,fssÞ. We note that the inertia of the block promotes
positive deviations from the quasi-static value kn ¼�GfF 0ss of the
critical stiffness at high frequency.

In Putelat et al. [7], a first step towards connecting the
dynamics of a slipping interface to the dynamics of a spring-
block system was performed in the context of the problem
illustrated in Fig. 1. Two horizontally infinite identical elastic
slabs of thickness h/2 are driven in opposite directions with a
uniform speed V/2 and slide against each other along a flat
frictional interface at z¼0 subjected to a normal stress s. The
density, the shear wave speed and the shear modulus of the slabs
are denoted r, cs and G¼ rc2

s , respectively. Assuming the inter-
facial slip to be uniform, the displacement in the two layers is
horizontal and denoted uðz,tÞ, where z is the vertical coordinate.
Assuming symmetry, it suffices to consider a velocity field in the
upper layer of the form

_uðz,tÞ ¼ V=2þ f ðt�ðz�h=2Þ=csÞ�f ðtþðz�h=2Þ=csÞ, ð6Þ

which accounts for shear waves radiating away from the interface
and reflecting back from the top boundary. Eq. (6) implies that the
interfacial slip rate vðtÞ ¼ _uð0þ ,tÞ� _uð0�,tÞ and the rate of inter-
facial shear stress _tðtÞ (from the time derivative of Hooke’s law
_sxz ¼G _uz) are given by

v¼ Vþ2½f ðtþh=ð2csÞÞ�f ðt�h=ð2csÞÞ�,

_t ¼�rcs½f 0ðtþh=ð2csÞÞþ f 0ðt�h=ð2csÞÞ�:

(
ð7Þ

The complete system upon which the analysis of this paper is
based comprises (7) together with the interfacial friction law (1),
or equivalently after differentiating (1),

_t ¼ Fv _v�GFf and _f ¼�G, ð8Þ

where the functions Fv, Ff and G are evaluated at ðv,f,sÞ.

Table 1
Typical material parameter values used in the Dieterich law (3) [12,17].

Material an a b L (m) Vn

(m/s)

r
ðm kg�3

Þ

G

(Pa)

s
(Pa)

Paper 0.369 0.0349 0.0489 0.9�10�6 10�6 800 106 103

Rock 0.6 0.01 0.015 20�10�6 10�6 2500 1010 108

Fig. 1. A single interface system: two identical elastic slabs slide in opposite

directions at constant speed 7V=2; elastic shear waves radiate from the frictional

interface and reflect at the boundaries z¼ 7h=2.
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