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a b s t r a c t

The propagation of waves in soft dielectric elastomer layers is investigated. To this end incremental

motions superimposed on homogeneous finite deformations induced by bias electric fields and pre-

stretch are determined. First we examine the case of mechanically traction free layer, which is an

extension of the Rayleigh–Lamb problem in the purely elastic case. Two other loading configurations

are accounted for too. Subsequently, numerical examples for the dispersion relations are evaluated for a

dielectric solid governed by an augmented neo-Hookean strain energy. It is found that the phase speeds

and frequencies strongly depend on the electric excitation and pre-stretch. These findings lend

themselves at the possibility of controlling the propagation velocity as well as filtering particular

frequencies with suitable choices of the electric bias field.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of this work is to investigate the propagation of
electromechanical induced waves in a dielectric elastomer (DE)
layer subjected to finite deformations. In the purely elastic case the
first solution for surface waves based on the exact equations of (2D)
elasticity was introduced by Rayleigh [1] in 1887, who determined
the so-called Rayleigh waves. This work was later extended for
propagation of waves in elastic plates by Rayleigh [2] himself and
Lamb [3]. Here we extend the Rayleigh–Lamb problem and account
for incremental motions superimposed on finite deformations in
dielectric media, and investigate how these are influenced by the
presence of external electric field and pre-stretch.

When subjected to an electric field electroactive polymers
(EAPs) deform and both their mechanical and electrical properties
are modified. In contrast to piezoelectric ceramics, DEs are
capable of undergoing large deformations, a property that entitled
them the name ‘‘artificial muscles’’. Moreover, while in piezo-
electricity the electromechanical coupling is linear, in DEs the
mechanical fields depend quadratically on the electric field.
A proper theory, which accounts for the aforementioned coupling
and captures the ability of the material to undergo finite strains is
therefore required. The foundations of this non-linear electro-
elastic theory are summarized in the pioneering works of Toupin

[4] and Eringen [5] for the static case. These contributions were
later extended by Toupin [6] to account for the dynamics of these
elastic dielectrics. A comprehensive summary can be found in
monographs by Eringen and Maugin [7] and Kovetz [8]. Due to
the development of new materials that admit this coupled
behavior, thus branching toward a window of new applications
(e.g., [9–11]), the interest in these electroelastodynamic theories
revived and the coupled electromechanical theory was revisited
recently (e.g., [12–15]). The foregoing works and their extension
to the domain of soft dielectric composites by deBotton et al. [16]
and Bertoldi and Gei [17] differ in their constitutive formulations,
the choice of the independent variables, the resultant electrostatic
stress-like tensors and electric body-like forces. For a review of
the diverse formulations of the constitutive laws and governing
equations the reader is referred to Bustamante et al. [18]. Among
the various approaches we recall the formulation proposed by
Dorfmann and Ogden [13] for the static case, and its extension to
dynamics by Dorfmann and Ogden [19]. In these works the
concept of ‘total’ stress tensor that is derived from a ‘total’ or
‘augmented’ energy-density function was employed. In this work
we follow the framework proposed by the latter.

In contrast with the relatively large body of theoretical works
that are available, only a few boundary-value problems (BVP)
were solved in the context of the dynamic behavior of electro-
mechanically coupled EAPs. One of the first contributions in the
field of piezoelectricity was made by Tiersten [20], who examined
the thickness vibrations of an infinite piezoelectric plate induced
by alternating voltage at the surface electrodes, and later solved
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the corresponding problem of wave propagation [21]. To the best
of the authors knowledge, while for piezoelectric media solutions
for BVP accounting for the influence of pre-strain and bias field
are available (see review article by Yang and Hu [22]), analogue
developments in the context of dielectrics were considered by
Mockensturm and Goulbourne [23] and Zhu et al. [24], who
examined the dynamic behavior of dielectric elastomer balloons,
and by Dorfmann and Ogden [19], who studied the problem of
propagation of Rayleigh surface waves in a dielectric half-space.
Herein we continue along the path of the latter contribution and
consider the extension of the Rayleigh–Lamb wave propagation
problem to finitely deformed dielectric layers subjected to
coupled electromechanical loading.

The work is composed as follows. In Section 2 the theory of
finite electroelastodynamics is summarized. The equations for
incremental motions superimposed on finite deformations are
outlined in Section 3. Specific finite deformations that correspond
to three different loading configurations are considered in Section
4 for a layer whose behavior is characterized by a particular
augmented energy-density function (AEDF), namely the incom-

pressible dielectric neo-Hookean (DH) model. Next, the extension of
the Rayleigh–Lamb dispersion relation for a DH layer is introduced
in Section 5. An analysis of the dispersion relation is carried out in
Section 6, and the effects of the bias electrostatic field and pre-
stretch are investigated for the three loading configurations. The
main conclusions and observations are summarized in Section 7.

2. Finite electroelasticity

Let v : O0 � I-O�R3 describe the motion of a material point
X from a reference configuration of a body O0, with a boundary
@O0, to its current configuration O, with a boundary @O, by
x¼ vðX,tÞ, where I is a time interval. The domain of the space
surrounding the body is R3

\O and is assumed to be vacuum. The
corresponding velocity and acceleration are denoted by v¼ v,t

and a¼ v,tt , respectively, while the deformation gradient is
F¼ @v=@X¼rXv, and where due to the material impenetrability
J� det ðFÞ40. Vectors between two infinitesimally close points
are related through dx¼ F dX, whereas area elements are trans-
formed via Nanson’s formula N dA¼ ð1=JÞFTn da. The volume ratio
between an infinitesimal volume element dv in the deformed
configuration, and its counterpart in the reference dV is given by
dv¼ J dV . As measures of the deformation the right and left
Cauchy–Green strain tensors C¼ FTF and b¼ FFT are used.

Let e denote the electric field in the current configuration.
Commonly the electric field is given by means of a gradient of a
scalar field, namely the electrostatic potential. The induced
electric displacement field d is related to the electric field in free
space via the vacuum permittivity e0 such that d¼ e0e. In
dielectric media an appropriate constitutive law specifies the
relationship between these fields. Generally, this connection can
be non-linear and anisotropic.

The balance of linear momentum is

r � r¼ ra, ð2:1Þ

where r is the ‘total’ stress tensor, and r is the material mass
density. The balance of angular momentum implies that r is
symmetric. Note that r consists of both mechanical and electrical
contributions, such that the traction t on a deformed area element
can be written as rn where n is the unit vector normal to @O. On
the boundary of the material we postulate a separation of the
traction into the sum of a mechanical traction tm which is a
prescribed data, and an electrical traction te which is induced by
the external electric field.

Assuming no free body charge (ideal dielectric), Gauss’ law
reads

r � d¼ 0: ð2:2Þ

Under a quasi-electrostatic approximation, appropriate when for
the same frequency the length of the waves under consideration
are shorter than the electromagnetic waves, Faraday’s law states
that the electric field is curl-free, i.e.,

r � e¼ 0, ð2:3Þ

thus enabling the usage of the aforementioned electrostatic
potential.

Taking into account fields outside the material, which hence-
forth will be identified by a star superscript, the following jump
conditions should be satisfied across @O, namely

½½r��n¼ tm, ð2:4aÞ

½½d�� � n¼�we, ð2:4bÞ

½½e�� � n¼ 0, ð2:4cÞ

where we is the surface charge density, and the notation
½½��� ¼ ð�Þ�ð�Þ

% is used for the difference between fields inside
and outside of the material. The outer fields are related by

d%

¼ e0e%, ð2:5Þ

r% ¼ e0 e% 	 e%�1
2ðe

% � e%ÞI
� �

, ð2:6Þ

where I is the identity tensor. Herein we identify the electrical
traction te as the consequence of the external stress r%, namely
the Maxwell stress, such that te ¼ r%n. In the surrounding space
outside the material d% and e% must satisfy Eqs. (2.2) and (2.3),
which reduce to Laplace equation of the electrostatic potential. As
a consequence the Maxwell stress is divergence-free.

The foregoing balance and jump equations can be recast in a
Lagrangian formulation with the appropriate pull-back operations.
Specifically, we have that

P¼ JrF�T, D¼ JF�1d, E¼ FTe, ð2:7Þ

for the ‘total’ first Piola–Kirchhoff stress, Lagrangian electric
displacement and electric field, respectively (e.g., [13]). The
corresponding balance equations are

rX � P¼ rLa, rX �D¼ 0, rX � E¼ 0, ð2:8Þ

where rL ¼ Jr is the density of the material in the reference
configuration. The jump conditions across the boundary @O0 read

½½P��N¼ tM , ½½D�� �N¼�wE, ½½E�� �N¼ 0, ð2:9Þ

where tM dA¼ tm da, wE dA¼we da and N is a unit outward
normal to @O0.

Following Dorfmann and Ogden [13], the ‘total’ first Piola–
Kirchhoff stress and the Lagrangian electric field are given in
terms of an augmented energy-density function C (AEDF) with the
independent variables F and D, such that

P¼
@C
@F

, E¼
@C
@D

: ð2:10Þ

For an incompressible material a Lagrange multiplier p is intro-
duced, which is a workless reaction to the kinematic constraint
such that

P¼
@C
@F
�pF�T: ð2:11Þ

The latter can be determined only from the equilibrium equations
and the boundary conditions.
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