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The dynamics of flat-on-average wrinkled flame front propagating through gaseous premixtures is
considered. Leading the asymptotic expansions in powers of the burnt to unburned fractional density
contrast (0 <y < 1) to third order, an evolution equation (called S3) is obtained for the instantaneous
front shapes. It reduces to Sivashinsky’s original equation (called S1) as y—0. It also modifies a
previous attempt by Sivashinsky and Clavin (called S2) to improve it. Numerical integrations of the S3
equation reveals that the new quadratic and cubic non-linearities featured at 3rd order happen to
mutually compensate partially one another for realistic y’s, and are negligible at y < 1. As a result, the
flame shape and speed solutions to S3 nearly coincide with those of a S1/S2 type of equation, even for a
10-fold density variation (y = 0.9) and for unsteady situations, provided a single O(1) coefficient a(y) be
adjusted therein, once for all for each 7. The O(y?) (and small) correction to it mainly originates from a
quartic non-linearity of geometrical origin. The agreement carries over to comparisons with some DNS
of 2D steady wrinkled fronts. A phenomenological (yet asymptotically correct at 7 < 1 and exact in the
linear limit) interpolating model equation is finally proposed to try and account for inertia effects
associated with fast transients (e.g. acoustics related) while reproducing the above results on steady

patterns.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

For all its connections with applications - e.g. turbulent
combustion, internal combustion engines, gas turbines, industrial
burners ...- the problem of wrinkled flame propagation through
premixed gases is a central one in combustion science, which is
by essence non-linear. Involving elliptic (for the velocity poten-
tials) or hyperbolic (for vorticity) equations and a free boundary
(the flame itself), it is further hampered by vorticity creation
across the latter and by the apparent impossibility to analytically
solve the Euler or Navier-Stokes equations for generic non-
potential flows. Direct numerical simulations (DNS) of reactive
Navier-Stokes equations may, in principle, give access to “exact
results” (i.e. with no large scale modeling) on flame topology and
dynamics. However, since these flames are very thin (~ 0.1 mm
in usual conditions), real-scale DNS need very high spatio-tem-
poral resolution and are extremely demanding in terms of
computational resources: they are sometimes involving tens of
million of CPU hours performed on hundreds of thousand of
processors (see for instance recent communications [1,2]).
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Moreover, due to the very large amount of data to be post-
processed, DNS do not necessarily allow for simple physical
analysis.

On the other hand, one can take advantage of this scale
separation and consider the flame as an infinitely thin front,
separating the fresh (or unburned, referred to with u subscript in
the sequel) mixture from the burnt (b subscript) gas. Hence, only
the flame surface or curve needs be parameterized—one spatial
dimension being removed. Also, many physical parameters can be
lumped into few ones. The evolution equation modeling
approach, consisting in finding an equation for the flame surface
dynamics only - and not solving for the whole reactive flow -
does not (nor claims to) replace the full 3D reactive equations. It
is usually limited to simple geometrical configurations (plane,
cylindrical or spherical on average). To date, no exact evolution
equation is available. However, if sufficiently precise equations
can be derived or built in different contexts (slow or fast
transients, expanding flames, strained flames, gravity effects,
acoustics...), they may provide pertinent information on flame
dynamics or even be used as building blocks of (larger scale) sub
grid scale modeling, e.g. in LES (large eddy simulations) of
reactive flows.

In a seminal work [3], Sivashinsky realized that the unburned
(p,) to burnt (p, < p,) density contrast 0 <y =(p,—p,)/p, <1
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may be used as a viable bifurcation parameter, albeit of a special
kind since all flames have y > 0: if y <1, the Landau-Darrieus
instability mechanism of spontaneous wrinkling is weak, enabling
the author of [3] to derive a leading order, weakly non-linear
equation, called S1 here, and also known as Michelson-
Sivashinsky equation (not to confuse it with the Kuramoto-
Sivashinsky equation) for the instantaneous flame shape.
Numerics [4] then analysis [5] revealed that the S1 equation
describes wrinkled flames qualitatively well. An attempt to go to
next (second) order in the y expansion [6] was partly successful.
Here, we correct this “S2” equation, then go to third order
following the same perturbative approach. The solutions to the
evolution equation (called S3) so obtained are studied numeri-
cally and in fact exhibit striking resemblance with those of an
equation (called S-fit) that has the same structure as S1 (and S2,
actually), provided a single y dependent coefficient, featured in
S3, be slightly modified therein. Such a resemblance carries over
to comparisons about unsteady fronts and with direct simulations
of steady fronts, even for realistic y’s. A phenomenological way of
extending all this to fast flame-shape transients is finally pro-
posed; it can also account for gravity effects, time-dependent
or not.

The paper is organized as follows. The model and propagation
are introduced in Section 2, while the coordinates and expansion
scheme are presented in Section 3. The evolution Eqs. S1-S3 are
derived in Section 4 (the most technical part of it being summar-
ized in the Appendix).

Section 5 compares the solutions to S1-S3 among themselves
and with others. A model for fast transients is proposed in Section
6. We end up with concluding remarks and open questions.

2. Model

At current time t, the flame is considered here to be a curve
x=F(y,t) in the fixed cartesian frame (x,y) defined in Fig. 1, and
separates two two-dimensional incompressible flowfields u(x,y,t)
where density p is either p, (upstream, x<F) or p,=(1-7)
pu < p, (downstream). Euler equations are assumed to govern
the velocity u=(u,v) and pressure p on both sides. Rankine-
Hugoniot relationships, specialized to vanishingly-small Mach
numbers [8], are meant to hold across the line x=F(y,t). For
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Fig. 1. Two-dimensional configuration: a plane-on-average flame front propagat-
ing along a 2-D channel. The coordinates are such that the far-upstream velocity is
S; along the x-axis, whatever F(y,t).

simplicity, the Markstein [9] local propagation law is postulated
nu-D),_, =5 (1—%FW/(1+F§)3/2>, 1)
n

where n = (1,-F,)/(1+F2)'/? is the local unit normal to the front,
D = (F;,0), the subscripts y or t represent partial differentiations
(e.g. (), =0()/dy) and S; > 0 is the prescribed propagation speed
of a flat flame. The prescribed k, > 0, to be later identified with a
neutral wavenumber, is related to the effective Markstein length
(L) by Lk, =7y/2, that is the only local length scale of the problem.
Once endowed with appropriate lateral boundary conditions, here
taken to be Ly, =27/kyox-periodicity along the y direction for
some kpox < kn, the Euler equations and Hugoniot relations are in
principle enough to compute u, _ - in terms of a presumed - and
smooth enough - F(y,t).
Then, Eq. (1) explicited as

v F
FotSu(y14F=1) + BVl _p = u|X:F,—sL+sL27£n] Ya @
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should provide an evolution equation for F(y,t) itself. Note that
the speed Sr at which the front advances on average towards the
uniform fresh mixture (x=-oc0) is given - through overall
continuity argument - by

1<Sr0/Su=(\/1+F ) ~1+(F2/20-F} /4+ ..)) 3)

because the curvature term in (1) vanishes upon averaging along
the transverse coordinate y: the operation denoted <.} is defined
as

Lpox
O Loy = /0 f) dy. )

Thus, Sr/S;—1 is the fractional increase (per unit y) in flame
length caused by wrinkling. Interestingly, Eq. (3) holds whenever
(1) is replaced by n.(u-D),_¢ =S/(1-q,(y)/(1+F2)'/?), for any
q(y). In particular, Eq. (3) is valid for the steady patterns
considered in [10], where q,(y) also accounts for stretch. As
evoked later on in (5.4), relation (3) applies to in even more
general situations, including those considered in the DNS of the
problem at hand.

3. Curved coordinates and small y expansions

At this stage, it is convenient to change the streamwise
coordinate from x to X =x—F(y,t), then to introduce the scalings
summarized in Table 1.

Such scalings, where (U*,V*,P*,£,1,7) are meant to be O(1)
as y—>0, were dictated by the need of balancing F:/Si,
uly_r /Si—1 (estimated from the exact linearized dynamics
[11,12] at y <1, see Eq. (25)), yFyy/kn, and the leading order

1+F}—-1~F;/2, all featured in (2). As for the

estimates on v and p, they follow from the continuity equation
and the momentum balances, respectively. The scaling of X is

non-linearity

Table 1
The various non-dimensional variables (&,1,7) and unknowns (U *,V £ ,P* ,¢); the
latter are O(1) but all vanish for a steady, flat flame.

Fresh side (X <0) Burnt side (X > 0)
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