Accepted Manuscript

Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures

Arya Chatterjee, A. Ghosh, A. Moitra, A.K. Bhaduri, R. Mitra, D. Chakrabarti

PII: S0749-6419(17)30591-0

DOI: 10.1016/j.ijplas.2018.02.002

Reference: INTPLA 2298

To appear in: International Journal of Plasticity

Received Date: 19 October 2017
Revised Date: 11 January 2018
Accepted Date: 3 February 2018

Please cite this article as: Chatterjee, A., Ghosh, A., Moitra, A., Bhaduri, A.K., Mitra, R., Chakrabarti, D., Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures, *International Journal of Plasticity* (2018), doi: 10.1016/j.ijplas.2018.02.002.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Role of hierarchical martensitic microstructure on localized deformation and fracture of 9Cr-1Mo steel under impact loading at different temperatures

Arya Chatterjee ^{a,*}, A. Ghosh ^b, A. Moitra ^c, A.K. Bhaduri ^c, R. Mitra ^a, D. Chakrabarti ^a

^a Department of Metallurgical and Materials Engineering, Indian Institute of Technology (I.I.T.) Kharagpur, Kharagpur - 721302, West Bengal, India.

* Corresponding Author:

Abstract

Blocks from a modified 9Cr-1Mo steel plate used for fast breeder reactor application under normalized and tempered condition were hot-rolled at different temperatures (1050-875°C) applying same amount of deformation, normalized using different austenitizing temperatures (1100-950°C) and finally tempered at 750°C. These samples having tempered martensitic microstructures were impact tested over the temperature range of +80°C to -196°C. The effect of hierarchical martensitic microstructure with different structural units of varying length scales (i.e. lath, sub-block, block, packet and prior-austenite grain) on the micro-mechanisms of deformation and fracture have been elucidated by studying the propagation of cleavage cracks and the formation of shear cracks within the samples using electron back-scattered diffraction (EBSD) technique and Visco-plastic self-consistent (VPSC) polycrystalline plasticity model. The study indicates strong influence of certain crystallographic variants on the cleavage crack propagation and the 'martensitic block' is found to be the 'effective grain' controlling the impact toughness at low temperatures. Dynamic fracture at high temperatures was dictated by cracking along the shear bands, evolution of which depend on the size and distribution of prior-austenite grains.

Keywords: Dynamic fracture (A), Crack propagation and arrest (A), Martensitic steel (B), Crystal plasticity (B), Impact testing (C).

^b Department of Materials Engineering, Indian Institute of Science (IISc), Bengaluru- 560012, Karnataka, India.

^c Materials Development and Technology Group, Indira Gandhi Center for Atomic Research (IGCAR) Kalpakkam-603102. TN, India.

Download English Version:

https://daneshyari.com/en/article/7174830

Download Persian Version:

https://daneshyari.com/article/7174830

<u>Daneshyari.com</u>