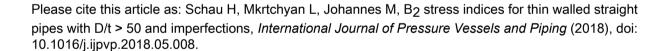
Accepted Manuscript

B₂ stress indices for thin walled straight pipes with D/t > 50 and imperfections

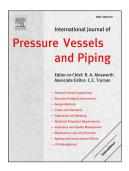
Henry Schau, Lilit Mkrtchyan, Michael Johannes

PII: S0308-0161(18)30008-5

DOI: 10.1016/j.ijpvp.2018.05.008


Reference: IPVP 3711

To appear in: International Journal of Pressure Vessels and Piping


Received Date: 5 January 2018

Revised Date: 8 May 2018

Accepted Date: 23 May 2018

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

B_2 stress indices for thin walled straight pipes with D/t > 50 and imperfections

Henry Schau TÜV SÜD Energietechnik GmbH Dudenstrasse 28 68617 Mannheim Germany henry.schau@tuev-sued.de

Lilit Mkrtchyan
Cooperative State University Baden-Wuerttemberg
Coblitzallee 1-9
68163 Mannheim
Germany
lilit.mkrtchyan@dhbw-mannheim.de

Michael Johannes TÜV SÜD Energietechnik GmbH Dudenstrasse 28 68617 Mannheim Germany michael.johannes@tuev-sued.de

Abstract

The design equations for primary loads of piping components in the ASME Boiler and Pressure Vessel Code (ASME Code) are based on the B_1 and B_2 stress indices. In the present studies the B_2 stress indices of thin-walled straight pipes with D/t-ratios $20 \le D/t \le 140$ are determined using FE analyses. The analyses are performed for pipes made of ideal elastic-plastic materials and some selected steels. The B_2 index is calculated from the maximum bending moments obtained by nonlinear FE analyses. For the calculation of the B_2 indices for straight pipes with $40 < D/t \le 100$ a formula derived in previous works is used. The obtained B_2 indices are only valid if they satisfy an additional relation, which follows from the design equation for primary loads. Formulas for the dependency of the B_2 indices from the D/t ratio and the yield stress are given. Finally, conservative equations for the determination of B_2 indices for ferritic and austenitic straight pipes are derived. For ferritic pipes there is a good agreement with the B_2 indices according to the ASME Code. In difference to the ASME Code the temperature dependency need not be considered for ferritic pipes. The B_2 indices for austenitic pipes with D/t = 100 are 33% larger than the values of the ASME Code. The background for the deviations is explained.

Highlights

- The B_2 indices for thin-walled straight pipes with $40 < D/t \le 100$ and technical possible imperfections are calculated with nonlinear FE analyses and specially derived formulas.
- Especially for larger D/t ratios the failure occurs by plastic buckling due to imperfections.
- A relation to the check the validity of the obtained B₂ indices is derived. For buckling additional corrections are necessary for the B₂ indices.
- Equations for the B₂ indices for ideal elastic-plastic, ferritic and austenitic straight pipes are derived and compared with the ASME Code.

Keywords

Piping design, ASME Code, primary loads, thin-walled straight pipes, stress indices, determi-

Download English Version:

https://daneshyari.com/en/article/7175004

Download Persian Version:

https://daneshyari.com/article/7175004

<u>Daneshyari.com</u>