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A B S T R A C T

This paper provides the analytical solution of the elastic hollow sphere subjected to axisymmetric and pure
deviatoric surface tractions within the framework of the infinitesimal strains. The expressions of the stress and
displacement fields are derived in closed-form in terms of spherical harmonics by using Boussinesq-Neuber-
Papkovitch potentials. The obtained solution is valid for thin and thick hollow sphere. It is shown that, for the
J2-plasticity, the hollow spherical shell undergoes incipient first plastic strains at the pole =θ π/2 located on the
internal surface boundary. In the perspective of shakedown analysis of ductile porous materials, the macroscopic
stress and strain fields of the hollow sphere model are obtained from their local counterparts by the volume
average operator.

1. Introduction

Over the past few years, there has been a growing interest in
Metallic Hollow Sphere Structures (MHSS) due to their light weight and
their capacity for energy absorption and heat insulation. These novel
foams, composed of an assemblage of hollow spheres, are used in
transport engines, aerospace and chemistry [1–3]. For instance, the
hollow silicalite spheres are used for ethanol/water separation by per-
vaporation [4], the hollow spheres ceramics are employed for heat
insulation [5], the synthetic magnetic polymeric microsphere can be
used for selective enrichment and rapid separation of phosphopeptides
[6], etc. New technologies for manufacturing hollow spherical-cell
foams with high precision for wide ranges of thickness and diameter
have been developed recently [7,8]. In parallel, great efforts have been
focused over characterization of different failure modes of these cellular
materials which requires a better understanding of deformations of a
single hollow sphere.

On the other hand, the hollow sphere shell plays a key role in
ductile damage of porous materials. In fact, since the Gurson's pio-
neering work [9] on ductile damage of voided solids, the unit cell
modeling the representative elementary volume (REV) in micro-
poromechanics is almost the hollow sphere [10–15] because it is the
simplest geometrical model. Further, it allows the derivation of closed-
form expressions of the effective yield criteria according to the local
strength yield of the solid matrix. In our recent works [16,17], we have
adopted the hollow sphere unit cell for the shakedown study of porous
materials under cyclic loads. The present work stems from these studies.

Although numerous experimental investigations and numerical
studies based on the finite element method have been devoted to the
hollow sphere under different loads [18–27], few analytic solutions
dealing with the mechanical response to complex and general loads are
provided in literature. The analytical elastic plastic solution of hollow
sphere under internal and external pressure is classical and can be
found in any textbook of mechanics of deformable solids. Wei et al. [28]
provided the closed form expressions of the stress and strain distribu-
tions within an elastic thin or thick hollow sphere subjected to dia-
metrical point loads. The method of solution is based on Fourier-Le-
gendre expansion for the boundary applied loads. Motivated by Wei
et al. solution, Chen et al. [29] have solved the problem of an elastic
hollow sphere compressed between two flat platens under the Hertzian
contact assumption. Gregory et al. [30] have developed approximate
solution for a thin or a moderately thick spherical cap in axisymmetric
deformations. An asymptotic expansion in the framework of the thin
shell theory with refined boundary conditions has been employed. Later
on, in Ref. [31], a similar procedure has been provided for the deri-
vation of an asymptotic solution of a thick hollow sphere compressed by
equal and opposite concentrated axial loads. The dynamic response of a
thick-walled elastic spherical shell subject to radially symmetric load-
ings have been studied in Pao et al. [32] by applying the theory of rays.

The purpose of the present work is to derive the analytical solution
of a hollow sphere made up of a homogeneous and isotropic material in
infinitesimal elasticity under axisymmetric and deviatoric surface
tractions. The plan of the paper is as follows. In the next section, a brief
review of the internal solution of a solid sphere and the external
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solution of the spherical cavity embedded in infinite matrix under ax-
isymmetric loads is presented. The presentation follows the one in Refs.
[33] and [34]. In section 3, we firstly setup the problem of a hollow
sphere subjected to an axisymmetic and pure deviatoric surface stress
distribution on the outer boundary. Then, the closed-form expressions
of the displacement and stress field are derived by the combination of
the internal and external solutions. The macroscopic stress and strain
fields obtained from their local counterparts by the volume average
operator are also delivered. Section 4 focuses on von Mises yield con-
dition of the hollow sphere. It is worthy to note that some computations
have been checked or performed by making use of the Mathematica
software [35,36]. Finally, some concluding remarks are drawn in the
last section.

2. The external and internal problems

Boussinesq-Neuber-Papkovitch potentials provide a powerful tool
for solving three-dimensional elastic problems. The displacement and
stress fields are expressed in terms of harmonic potentials, given by the
vector Ψ and the scalar function Φ.

In the absence of volume forces, the displacement field u reads:

= − − + ∇ ⋅ +u xμ ν Ψ Ψ2 (4 ) ( Φ) (1)

where x is the position vector, μ is the shear modulus and ν is Poisson
ratio.

The harmonicity of the potentials ∇ = ∇ =Ψ( 0; Φ 0)2 2 insures that
Lamé-Navier equations of the linear elasticity are satisfied.

2.1. Spherical harmonics

Consider the spherical coordinates r θ ϕ( , , ) where r is the radius, θ
the inclination angle, φ the azimuth one, with orthonormal frame
e e e{ , , }r θ ϕ as shown in Fig. 1.

For an axisymmetric potential F (independent of ϕ), the Laplace
equation writes:
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Employing the method of separation of variables, the solution of (2)
is decomposed in terms of Fourier series with respect of the variable θ
as follows:
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Substitution of (3) in (2) yields the following differential equation
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By introducing the new variable =ζ cosθ, equation (4) recasts into:
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This is the standard Legendre equation for which the continuous
fundamental solutions for ≤ζ 1 (or ≤ ≤θ π0 ) are the Legendre
polynomials of the first kind P ζ( )n :
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The solutions r P cosθ( )n
n ( ≥n 0) of the Laplace equation are called

the spherical harmonics.
It is worth noting that the harmonics defined by the Legendre

Polynomials given by (6) are bounded at the origin =r 0. However, if
we set = − −n p 1 for ≥p 0 then + = +n n p p( 1) ( 1), and thus the
Legendre equation (4) remains unchanged but with p replacing n. This
means that the potentials − −r P cosθ( )n

n
1 are harmonics and also singular

at the origin =r 0 for ≥n 0.

2.2. Internal solution

The internal problem is concerned with a solid sphere subjected to
an axisymmetric traction exerted onto its boundary Se defined by =r b.
Let =u u u( , , 0)r θ be the displacement vector explained in the spherical
frame. It is shown in Refs. [33,34], that by using Boussinesq-Neuber-
Papkovich solution (1), the displacement components are given in
terms of Legendre's polynomial series as follows:
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The stresses are given by:
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Let = = =T σ r b σ r b( ( ), ( ), 0)rr rθ be the stress vector applied onto
the boundary Se: =r b. For convenience, let us denote

= =f θ σ r b θ( ) ( , )rr and = =g θ σ r b θ( ) ( , )rθ .
It follows from equations (9) and (10) that:
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(14)Fig. 1. The spherical coordinates.
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