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Gas-wells are composed of several layers of different materials and undergo at least axial loads, internal and
external pressure and temperature differences from inside to outside. In this article, an analytical solution for
thick-walled tubes under internal and external pressure, constant axial deformation and a stationary heat dis-
tribution is provided. Here, we restrict ourselves to the case of small strain thermo-elasticity. As an example, a
gas-well with several layers in the production region is investigated, where the temperature distribution can vary

due to temperature cycles. The solution can also be used as verification example for finite element simulations or
for comparing it to approximate solutions.

1. Introduction

Strongly fluctuating energy production using wind and solar power
plants requires the storage of energy during times when the production
is too large. Thus, underground storages can be used to store, for ex-
ample, hydrogen in geological sub-surfaces. In this case, electrical en-
ergy is transformed into chemical energy, i.e. the surplus electrical
energy is utilized to separate water into hydrogen and oxygen by means
of electrolysis, [24]. The hydrogen is compressed and injected into a
geological formation. During periods of less power production, but high
demand, the hydrogen is extracted and transformed into electrical en-
ergy by generators or fuel cells. In this case, the completion of gas-wells
is mechanically and thermally treated. The completion itself is com-
posed of several layers of steel and concrete depending on the region.
Thus, the estimation of the stress state is of particular interest.

To determine the principal stress state either finite element simu-
lations or hand-calculation can be chosen. In this paper, we provide
analytical equations for the problem under consideration (we arrive at
systems of linear equations, which can principally solved analytically
by means of Mathematica [31]. However, these equations are very
complex for more than two layers so that “analytic” has to be under-
stood as “exact”). Of course, we can draw on finite elements for com-
puting the axisymmetric coupled problem either thermo-elastic or
thermo-viscoplastic in order to estimate the internal stress state.
However, an analytic approach has the advantage of both obtaining an
insight of the distribution of the stresses, deformation and temperature
as well as providing a verification example for numerical methods (code

verification) or for other approximate solutions. Furthermore, an ana-
lytical equation is much easier to be evaluated. The analytical equation
of the pure mechanical part is given, for example, in Ref. [17]. There,
the assumption of small strains, and linear, isotropic elasticity is con-
sidered. The extension to large strains, which leads to a numerical so-
lution, is studied in Ref. [34]. For the case of several layers of distinct
elastic layers, we refer to [4,8,10,25,32]. The case of an additional axial
deformation is summarized in Ref. [14]. In shrink fitting with three
layers and without temperature changes, see Ref. [20]. There are also
books treating pressure vessels, i.e. tubes on the subject of interest
[5,12,30], p.657; [35], p.683, and [27], pp.315f.

Further questions are, for example, different non-axisymmetric
stress states and curved wells, where plane stress conditions in the rock
formation are chosen to develop approximate analytical solutions, see
Ref. [33]. Several (drilling, production, installation) phases are in-
vestigated in Ref. [11], which draw on analytical approximate results of
[9] and [13]; but omitting the temperature differences in the rock
formation and the internal gas as well. Similarly to [18,33] applied
unequal horizontal stresses, but treated the temperature influence by an
approximation - constant over the wall thickness. To provide an ana-
lytical approximation in situations with thin-walled wells, in particular,
the casing itself [26], developed a model with the assumptions of
vanishing axial strains ¢, ~ 0, Barlow's formulas of thin-walled tubes,
and a constant mean temperature increase. These assumptions are
compared to finite element simulations. Further investigations have
been provided for these high temperature and high pressure conditions
by Refs. [2,3,28].
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Further interest are finite element simulations, where also inelastic
material properties of both the steel and the cement layers are taken
into account, however, yielding to pure numerical investigations, see,
for instance [1], and the references cited therein. An exact solution — in
the sense of an arbitrary accurate computation — for one-layer using
finite strain, von Mises plasticity is provided in Ref. [7]. Even interface
failure between steel and cement is of certain importance, see, for ex-
ample, [36].

The thermo-mechanically coupled problem of small strain analysis
can be divided into the stationary and the transient case. The transient
case is provided in Ref. [21], whereas the stationary problem of one-
sided coupling is summarized here. One-sided coupling implies that the
stress state is coupled with the temperature, and the heat equation is
independent of the deformation. For the case of fully coupling and
transient processes using finite elements, see Ref. [23]. However, it is
not known to the authors that the (analytical) exact, coupled, sta-
tionary, axisymmetric thermo-elastic problem under internal and ex-
ternal pressures and temperatures for several layers is provided in the
literature, which is the main goal of this presentation.

The structure of the article is as follows: first, the case of thermo-
elasticity and the resulting balance of linear momentum for the case of
axisymmetry is recapped. Additionally, the required temperature is
provided by the stationary heat equations, which is a one-sided cou-
pling problem. The equations for multiple layers of different materials
is derived under the assumption of a constant deformation and tem-
perature in axial direction. Finally, we treat a completion above and
below the packer with two and four layers of a representative gas-well.
The solutions are compared with finite element solutions.

The notation in use is defined in the following manner: geometrical
vectors are symbolized by @ and second-order tensors A by bold-faced
Roman letters. Furthermore, we introduce matrices and column vectors
symbolized by bold-faced italic letters A.

2. Basic equations of thermo-elasticity in the axisymmetric case

In the case of thermo-elasticity, we have to solve the equilibrium
conditions (here, without specific body-forces)

divT@) =10 e8]
and the stationary heat equation
Kodiv(grad® (X)) = 0, )

where T represents the stress tensor, X the position of the material
point, xe the heat conductivity, and © the absolute temperature. Here,
we draw on the differential operators

grad® =V 0= 0, §’k, grad T=u ®V= 7,,{ ® E)k = u"‘lk?m
®%" @)
VT =VU =0y g =ulpy, dvT=TV=T,g =T".2"
4)

with the tangent and gradient vectors E)m and Ek, respectively. V re-
presents the Nabla-operator, and both u*|,, = u*,, + F’jmuj as well as
T = T"; — T "™ 4+ THT,! covariant derivatives, see, for example,
[16,19]. These equations are accompanied by Dirichlet and Neumann
boundary conditions

TE)=7 @) onA and T(X) =7 &)onA, )

0(x)=08(X)onA® and ¢X)=g)onAl, 6)

with the surface regions A* and A®, where the displacements and the
temperatures are prescribed, and the boundary A° and A9, where the
stresses and heat flux are known. Here, A* U A° = A and A° U AT = A
have to hold. Of course, Eq. (5) has to be considered in particular
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directions, i.e. component-wise. Thus, it is more a symbolical notation.
T =TW are the tractions and g =—q-7 the heat flux, where @ de-
notes the surface normal.

Additionally to the boundary-value problem (1) and (2) we have
constitutive equations defining the stress state. We start with the de-
composition of the (linear) strain tensor

EX, 1) = %(grad UG, )+ gradu %, 1)), o)

where @ (X, t) defines the displacement field, into a mechanical Ey and
a thermal part Eg,

E = Ey + Eo. (8)
The thermal part is purely volumetric

Eo = ao8(X)I, ©

where

3() = 0(x) - 6 (10)

defines the temperature change, o the heat expansion coefficient, and
O, the reference temperature. In other words, the mechanical strains
are defined by the difference of the total strains (7) and the thermal
strains (9), see Refs. [6,15]. The stress state depends on the mechanical
strains
dyy

T=p—

= K (tr Ey)I + 2GEL,
dEy, (tr Eyp) M

an
Y (Enp) = K (tr Ex)?/2 + GEf-EJ) represents the specific free-energy of
the mechanical strains, leading with Eq. (9) to

T = K(tr E — 3a69)I + 2GEP. 12)

K =E/(3(1 — 2v)) defines the bulk modulus, G = E/(2(1 + v)) the
shear modulus, where E symbolizes Young's modulus and v the Poisson
number. trE=EI=EX denotes the trace operator, and
EP = E — (tr E)/3I the trace operator. I = §; ® E)k denotes the second
order identity tensor, Id = @, and A-B = A,/B¥, symbolizes the scalar
product of two second order tensors. In conclusion, Eq. (1) depends on
the displacements % (%) and the temperature 0(X), whereas Eq. (2) is
only built on ®(X). In this respect, we can solve Eq. (2) in a first step
and insert the result into Eq. (1).

2.1. Axisymmetric heat problem with several layers

Since we are interested in axisymmetric applications, Eq. (2) re-
duces in cylindrical coordinates (r, ¢, z) to
1 (C] L (€] 0,, =
7(" or )!Y + ﬁ flela) + 7z 0: (13)
see, for example [19], where the commas symbolize the partial deri-
vatives with respect to one of the coordinates (e.g. ©,, = d©/dr). Under
the assumption of a constant temperature in circumferential direction
and a constant temperature distribution in axial direction, Eq. (13)
degenerates to
0"(r) + ~0'(r) = 0

r e a4

Using the dimensionless parameter & = r/R, we choose R: =r,, the

ordinary differential equation (14) with @(r) = O(£(r)), i.e.

1 an

x_1 () = 46 ®),

e'(r) = é’(g’); = Eé’(@,

leads to

AN 1 A/
© —0 =0
&+ £ ® (15)

having the solution
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