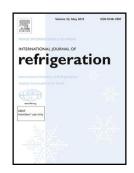
Accepted Manuscript

Title: Performance investigation of a pressure pulsation dampener applied in the discharge chamber of a twin screw refrigeration compressor

Author: Xiaokun Wu, Ziwen Xing, Wenqing Chen, Xiaolin Wang


PII: S0140-7007(17)30359-6

DOI: https://doi.org/doi:10.1016/j.ijrefrig.2017.09.012

Reference: JIJR 3752

To appear in: International Journal of Refrigeration

Received date: 20-4-2017 Revised date: 10-9-2017 Accepted date: 20-9-2017

Please cite this article as: Xiaokun Wu, Ziwen Xing, Wenqing Chen, Xiaolin Wang, Performance investigation of a pressure pulsation dampener applied in the discharge chamber of a twin screw refrigeration compressor, *International Journal of Refrigeration* (2017), https://doi.org/doi:10.1016/j.ijrefrig.2017.09.012.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Performance Investigation of a Pressure Pulsation Dampener applied in the Discharge Chamber of a Twin Screw Refrigeration Compressor

Xiaokun Wu^a, Ziwen Xing^a, Wenqing Chen^b, Xiaolin Wang^c

Highlights

- Effect of a pressure pulsation dampener (PPD) was studied in a twin-screw compressor.
- A theoretical model and experimental set-up were developed for this purpose.
- Fluid sound speed and oil flow rate largely affected the pressure attenuation ratio.
- The PPD designed using the proposed model had an optimal performance.
- The PPD reduced the vibration acceleration of the compressor by 36.2 to 41.1%.

Abstract

Intermittent gas flow generates pressure oscillations in the twin-screw refrigeration compressor that cause serious problems such as structural vibration and noise. In order to reduce the amplitude of this pressure pulsation, a pressure pulsation dampener (PPD) applied in the discharge chamber of a twin screw refrigeration compressor was proposed based on the theory of Helmholtz resonator. A mathematical model was developed to design an optimal PPD by incorporating the R134-oil mixture sound speed model and the pressure pulsation simulation model. A comprehensive experimental study was then performed to validate the model and evaluate the effect of key parameters such as oil flow rate and cavity volume on attenuation performance of the PPD. Vibrational characteristics of the compressor equipped with and without the PPD were also measured and compared. Under the design frequency of 250 Hz, the vibrational acceleration of compressor under-chassis reduced by 36.2% to 41.1% when the compressor was fitted with the proposed PPD.

1

^a School of Energy and Power Engineering, Xi'an Jiaotong University, 28 Xianning West Road, Xi'an 710049, PR China

^b Suzhou Academy, Xi'an Jiaotong University, 99 Renai Road, Suzhou 215123, PR China

^c School of Engineering & ICT, University of Tasmania, Private Bag 65, Hobart, TAS 7001, Australia

^{*}Corresponding author, Email: wqchen_xjtusz@126.com Tel.: +86-0512-69562807; Fax: +86-0512-69562807

Download English Version:

https://daneshyari.com/en/article/7175424

Download Persian Version:

https://daneshyari.com/article/7175424

<u>Daneshyari.com</u>