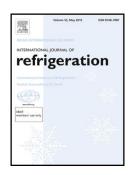
Accepted Manuscript

Title: Real-time minimization of power consumption for air-source transcritical CO₂ heat pump water heater system

Author: Bin Hu, Yaoyu Li, R.Z. Wang, Feng Cao, Ziwen Xing


PII: S0140-7007(17)30400-0

DOI: https://doi.org/doi:10.1016/j.ijrefrig.2017.10.016

Reference: JIJR 3784

To appear in: International Journal of Refrigeration

Received date: 2-7-2016 Revised date: 3-7-2017 Accepted date: 10-10-2017

Please cite this article as: Bin Hu, Yaoyu Li, R.Z. Wang, Feng Cao, Ziwen Xing, Real-time minimization of power consumption for air-source transcritical CO₂ heat pump water heater system, *International Journal of Refrigeration* (2017), https://doi.org/doi:10.1016/j.ijrefrig.2017.10.016.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Real-time Minimization of Power Consumption for Air-Source Transcritical CO₂ Heat Pump Water Heater System

Bin Hu^{1,*}, Yaoyu Li², R.Z. Wang¹, Feng Cao³, Ziwen Xing³

¹Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University Shanghai 200240, China

² Department of Mechanical Engineering, University of Texas at Dallas Richardson, TX 75080, USA

³School of Energy and Power Engineering, Xi'an Jiaotong University Xi'an, 710049, China

*Corresponding Author Tel: (86) 21-34206548; E-mail address: <u>hb1223@sjtu.edu.cn</u>

Highlights

- Real-time power optimization for CO₂ heat pump water heater is introduced.
- The control output is power consumption not the system COP.
- The mathematical validation and proof is provided.
- Simulation results demonstrate the reliability and applicability.
- The proposed approach is model free, which is beneficial for practice.

ABSTRACT

Based on Extremum Seeking Control, a real-time optimization strategy is proposed for minimizing the power consumption of a transcritical CO₂ heat pump system. An analytical framework is established to justify the equivalence between power minimization and the maximization of coefficient of performance. As compared to the COP feedback, power feedback based control avoids the need for several sensors beyond the simple and reliable power measurement. The proposed ESC scheme is based on three measurements of power consumption, high-pressure and gas cooler outlet water temperature. Simulations are conducted for several scenarios: a fixed operation condition, change of ambient condition and realistic ambient temperature condition. For all simulation cases, the water inlet temperature is fixed at 12°C, while the water outlet temperature is set as 60°C. Simulation results show that ESC is able to search and even track both fixed and slowly varying optimum discharge pressure without need for system model.

Keywords: Real-time optimization, Power consumption, Transcritical, CO₂ Heat pump, Extremum seeking control **Nomenclature**

a_i	coefficient of adjustment	$ ho_I$	density of the suction gas, kg·m ⁻³
A	heat transfer area,m ²	$oldsymbol{\eta}_{v}$	volume efficiency
b_i	coefficient of adjustment	η_m	mechanical efficiency

Download English Version:

https://daneshyari.com/en/article/7175449

Download Persian Version:

https://daneshyari.com/article/7175449

<u>Daneshyari.com</u>