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a  b  s  t  r  a  c  t

Using  Bellman’s  dynamic  programming  method,  a fuel-consumption  optimum  flight  trajectory  of a  typical
mid-range  aircraft  is  constructed  for  a prescribed  range.  The  optimum  trajectory  was  calculated  for  the
full  model  of  motion  of  the aircraft  along  a trajectory  in  a vertical  plane.  Optimization  was  realized
simultaneously  for the  whole  trajectory  without  decomposing  the process  into  individual  steps.  The
method  made  it possible  to  take  into  account  all restrictions  imposed  both  by technical  peculiarities  of
the aircraft  and also  by  other  requirements  – safety  and  comfort  of  the  passengers.

© 2018  Elsevier  Ltd. All  rights  reserved.

In connection with the fact that transport aircraft, unlike fighter jets, are characterized by low manoeuvrability, individual segments of
the flight trajectory – climb, change of level, descent, motion along a glide path – have been investigated relatively deeply. The problem of
optimization of the trajectory as a whole to minimize fuel consumption is of practical interest.

Aircraft trajectory control algorithms should ensure satisfaction of conditions of safety and economy, and at the same time require
minimum computation time. Below, we consider the solution of the problem of minimum fuel consumption during flight from one point
to another. Similar problems have been solved by decomposition of the trajectory into three parts: cruise climb, cruising segment, and
descent with approach to landing.1–8 The problem of minimizing fuel consumption (or the generalized criterion consisting of a linear
combination of fuel consumption and flight time) was solved on each segment separately. Of course, the mutual influence of adjoining
segments was taken into account. To construct the entire flight trajectory, the solutions obtained on individual segments are joined together
using some intermediate segments.

In the optimization of the segments, an energy approach was  applied to describe the motion of the aircraft, apparently first proposed in
Ref. 9 for the optimization of trajectories of flying machines and then widely used to solve different problems of optimization of trajectories,
in particular, to solve the problem of four-dimensional navigation.1–5 As a rule, when using this optimization approach, Pontryagin’s
maximum principle is applied.10

The need arises to check the results obtained by the indicated method by optimizing the trajectory as a whole without subdividing the
problem into individual tasks. An exact solution by methods proposed earlier1 in the presence of complicated and numerous phase con-
straints is exceedingly difficult. Bellman’s dynamic programming method makes it possible to take numerous and complicated constraints
into account, both those imposed by technical peculiarities of a definite type of aircraft and those arising from other requirements, for
example, safety and passenger comfort.

Many recent studies on optimization of trajectories of non-manoeuvrable aircraft2–18 have been based on significantly simplified models
of motion, not taking phase and other constraints into account. In this connection, a study including a significant number of elements
inherent in real-world conditions would be of interest. The present paper is dedicated to that goal.

1. Statement of the problem

The main role in ensuring economization is played by control of the aircraft in the vertical plane. We will assume that the flight trajectory
is always found strictly in the vertical plane. The coordinates of the centre of mass of the aircraft x, y are assigned in a fixed right-handed
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Cartesian coordinate system OXY (the Y axis is directed along the vertical and the X axis is horizontal). Then, the equations of motion of
the aircraft have the form19

(1.1)

Here, g is the acceleration due to gravity, V is the magnitude of the aircraft velocity, m is its mass, � is the pitch angle, nx is the tangential
load, ny is the load factor, Qt is the fuel consumption per second, which depends on the Mach number M, the flight altitude y, and the thrust
P.

We will neglect the normal component of the tractive force. Thus, for the load factor ny and the tangential load nx the following
expressions are valid:

(1.2)

where q is the dynamic pressure, �(y) is the mass density of the atmosphere as a function of altitude, S is the wing area, taken in what
follows to be equal to 168.3 m2, Cx is the drag coefficient, which is a function of the lift coefficient Cy and the Mach number M.

Eliminating time from the equations of motion by using the fourth of Eqs (1.1), we obtain

(1.3)

The controlling parameters are the lift coefficient Cy and the magnitude of the tractive force P. Substituting the expression for ny in
relations (1.2) into the second of Eqs (1.3), we find

(1.4)

Substituting the expression for nx (1.2) into the first of Eqs (1.3), we  have

(1.5)

It follows from system (1.3) that to describe the motion of the object it suffices to know the three functions V(x), �(x), and y(x), on the
basis of which it is possible to find the control functions (parameters) Cx(x) and P(x) from formulae (1.4) and (1.5), and also the aircraft
mass m(x) by bringing to bear the last equation of system (1.3).

The flight time T is not fixed.
The initial and final positions of the aircraft are assigned as follows:

It is required to choose the control parameters such that the aircraft travels from the prescribed initial position to the prescribed final
position with minimum fuel consumption. The optimization criterion has the form

Fig. 1.
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