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a  b  s  t  r  a  c  t

Equations  which  describe  the  propagation  of  waves  in  tubes  with  elastic  walls  are  investigated,  methods
for  calculating  them  are  developed,  and solutions  containing  reversible  discontinuity  structures  are  ana-
lysed in  the  case  of  a fluid-filled  tube.  The  model  of  a tube  with  elastic  walls  constructed  on the  basis  of
the complete  model  of a membrane  and  the  non-linear  theory  of  elasticity  is generalized.  The  viscosity
and  compressibility  of  the  material,  the  possibility  of filling  the  tube  with  a gas,  and  the  flexural  rigidity
of  the  tube  walls  are  taken into  account.  The  problem  of  the  decay  of an  arbitrary  discontinuity  is  solved
numerically  in  the  case  of  a fluid-filled  tube.  The  results  obtained  correspond  to  the previously  developed
theory  of  reversible  discontinuities.  Simplified  hyperbolic  equations  of  long  waves,  as  well as  equations
for  small-amplitude  waves  which  do not  take into  account  longitudinal  elastic  waves  and  are  similar  to
the  Boussinesq  equations,  are  derived  for cases  when  a tube  is  filled  with  a liquid  and  a  gas. The  possibil-
ity  of  overturning  of  the  waves  is analysed.  A  procedure  for correcting  the  numerical  schemes  by  adding
terms  with  high-order  derivatives  to  the equations  is  developed,  and  the  order  of  approximation  of  the
numerical  scheme  remains  unchanged,  enabling  the performance  of calculations  with  low  schematic
dissipation.

©  2018  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Equations which describe flow in tubes with elastic walls have been considered in may  studies owing to the relevance of such investiga-
tions for technical applications and for the study of biological objects, as described, for example, in the review in Ref. 1, where, in particular,
model equations with dispersion, namely, the Korteweg–de Vries equation (the KdV equation) and the non-linear Schroedinger equation,
were used. Here we will examine equations obtained on the basis of a complete model of a membrane and a non-linear elastic model
with finite strains using the initial Lagrangian longitudinal coordinate.2 These equations have been investigated analytically in the case
of controlled pressure3 and in the case when a tube is filled with a fluid.4–6 The main purpose of these studies was to investigate solitary
waves.

The theory of reversible discontinuities7–11 was  developed for models with complex dispersion. Its main elements are prognosis of the
possible type of discontinuity from the dispersion relation and classification of the discontinuity structures. According to this theory, the
solutions should contain homogeneous zones, centred simple waves and time-expanding wave zones (expanding discontinuity structures),
which can be described by averaged equations, as well as local discontinuity structures in the form of classical and generalized kinks and
solitary waves. In addition, weakly dissipative dispersion models were investigated. In this case, the wave zones do not expand with time,
but they are also described by averaged equations. The solitary waves and discontinuity structures in the case of a tube with controlled
pressure were investigated in detail by analytical methods and by methods of numerical analysis;12 solutions of the Riemann problem (the
problem of the decay of an arbitrary discontinuity) were considered, and it was concluded that the solutions correspond to the theory of
reversible discontinuities.
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The purpose of the present work is to investigate equations constructed on the basis of the complete membrane model and the non-
linear theory of elasticity by applying the theory of reversible and weakly dissipative discontinuities to them. In view of the fact that the
equations were previously investigated in the case of a tube with controlled pressure, here the equations are investigated mainly in the
case when the tube is filled with a liquid or a gas. A generalization of the known equations is proposed: the viscosity and compressibility
of the tube material and the compressibility of the filler are taken into account, and the flexural rigidity of the tube walls is taken into
account. This is done to determine the boundaries of the applicability of the results obtained and of the calculation methods. Then the
solutions of the problem of the decay of an arbitrary discontinuity in the case of a fluid-filled tube are analysed. The principal structures
of reversible discontinuities that were previously revealed for other models are observed in the solutions. Next, simplified equations of
the hyperbolic type and equations of low-amplitude long waves, which are similar to the ordinary and generalized Boussinesq equations,
are derived for the cases of filling with a liquid and a gas. The structures of discontinuities were already previously investigated for the
Boussinesq equations, enabling us to compare the results. Then the possibility of reversal of the waves is discussed, and it is concluded
that in the present model, unlike the other models, dispersion is generated by terms with low-order derivatives, and therefore, despite
the presence of discontinuity structures, reversal is possible for some initial data. The numerical methods used to solve the equations that
describe flows in tubes are presented in the conclusion. The results of the theory of reversible and weakly dissipative discontinuities were
used to select the numerical scheme by analysing the solutions obtained for the Riemann problem. A procedure for correcting the schemes
by adding terms with high-order derivatives, which enables us to achieve convergence without lowering the order of the approximation,
was used in the problem of a fluid-filled tube.

2. Basic equations and generalizations of the model

The equations of motion of waves in a tube with incompressible axisymmetric elastic walls and fixed internal and external pressures
have the form3

(2.1)

A prime denotes differentiation with respect to the variable Z, which is the initial Lagrangian spatial coordinate along the tube, a dot
denotes differentiation with respect to the time t, H and h are the thickness of the tube wall in the stress-free and stress states, W = W(�1,
�2, �3) is the elastic potential, p is the pressure associated with the incompressibility of the tube material,13 which is similar to the pressure
in an incompressible fluid (in the theory of the elasticity of incompressible materials, this quantity is called the Lagrange multiplier14,15),
the parameter P is the difference between the internal and external pressure, and the parameter � is the density of the tube material per
unit area. The elastic properties of the tube wall are described using the membrane model, the unknowns z and r assign the tube surface
in a cylindrical coordinate system, and the z axis of this system coincides with the tube axis. Here the �i are the principal stretches, and
the �i are the principal stresses, that is, the stress tensor components. The subscripts 1, 2, 3 correspond to the latitudinal (circumferential),
meridional (tangential in a plane passing through the rotation axis) and orthogonal directions of the deformable surface. It is assumed that
when there is no load we have

A model with controlled pressure is suitable in the case in which the tube is filled with a gas of negligibly small density. The pressure
is maintained constant by the flow of the medium into the tube from a reservoir of large volume or the operation of a compressor.

In the case of the use of a viscoelastic model of the Kelvin–Voigt type,16 it is logical to add viscous stresses, such as, for example,

The viscosity coefficients can depend on the strain.
The tube material is assumed to be incompressible; therefore,17

Here and below, the notation Ŵi = ∂Ŵ/∂�i is used. The formula presented above for the stresses �1 and �2 is derived from the
assumption that the transverse stresses �3 are equal to zero (the membrane model). More precisely, it is assumed that the quantities p
and �3W3 are large compared with the pressure difference P. In the case when the viscoelastic model described above is used, in a similar
manner we obtain

In the case when the compressibility of the material is taken into account and p is determined by the elastic strains (see Section 3),
formulae that do not contain �3 can also be derived for �1 and �2 by taking advantage of the assumption that �3 = 0 and finding �3 in terms
of �1 and �2. For example, for the Hencky material described in Section 3, for which
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