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a  b  s  t  r  a  c  t

Rotational  motion  of an  axially  symmetric  gyrostat  satellite  under  the  action  of  its  gravitational  torque  in
a  circular  orbit  is  considered.  Periodic  motions  of  the  symmetry  axis  of  the  satellite  relative  to  the  orbital
coordinate  system  are  investigated.  In  absolute  space,  these  motions  appear  as a  slow  precession  about
the normal  to the  orbital plane.  Such  motions  are  described  by  an autonomous  system  of  fourth-order
differential  equations.  The  gyrostatic  angular  momentum  is  assumed  to be  large,  which  allows  us to
introduce  a  large  parameter  into  the  equations  of  motion.  Solutions  that  are  a  rest  in  absolute  space,  with
the symmetry  axis forming  a nonzero  angle  with  the  orbital  plane,  serve  as the  generating  solutions.  The
period  of  the  found  solutions  depends  on  this  angle.  Earlier,  the  limit  case  of  such periodic  motions  when
the  symmetry  axis  of the  satellite  lies  in the  orbital  plane  in the  generating  solutions  was  investigated.
The  limit  solutions  describe  small  oscillations  of  the  symmetry  axis  of  the  satellite  in absolute  space,  and
their  period  is equal  to half  the  orbital  period.  To  prove  the  existence  of  the  new  motions,  we  reduce  the
boundary  value  problem  configuring  the  periodic  solutions  to a system  of  integral  equations,  which  is
solved  by  the  method  of  successive  approximations.  This  reduction  is carried  out  according  to  the  same
scheme  as  in  the  degenerate  case,  but the  necessary  solutions  of  the integral  equations  are  constructed
differently.  The  result  obtained  explains  the  appearance  of  the  limit  solutions  although  the  latter  cannot
be  constructed  within  the framework  of  the considered  general  case.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Equations of motion and their properties

Let us consider an axially symmetric gyrostat satellite, whose centre of mass moves along an unknown circular orbit about a fixed
attractive centre. The gyrostatic angular momentum of the satellite is constant and directed along its axis of material symmetry. To write
out the equations of rotational motion of the satellite, we  introduce two  right-handed Cartesian coordinate systems.

The system x1x2x3 is formed by the Rezal axes [1] of the satellite, and the x1 axis is directed along its axis of material symmetry. The
system Y1Y2Y3 is the orbital coordinate system, and the Y3 axis is directed along the radius vector of the centre of mass relative to the
attractive centre, and the Y2 axis is perpendicular to the orbital plane of the satellite and is directed along the kinetic moment vector of its
orbital motion. The system Y1Y2Y3 rotates about the Y2 axis with constant angular velocity �0 equal to the average motion of the centre of
mass of the satellite.

The orientation of the system x1x2x3 relative to the system Y1Y2Y3 is given by the angles � and �. The system Y1Y2Y3 is rotated into the
system x1x2x3 by the two rotations (here we assume that these systems have a common origin): 1) through the angle � + �/2 about the
Y2 axis, 2) through the angle � about the Y3 axis obtained after the first rotation. The geometrical sense of these angles is the following: �
is the angle between the x1 axis and the orbital plane Y1Y3, � > 0 if this axis is directed into the half-space Y2 > 0; � is the angle between
the −Y3 axis and the projection of the x1 axis onto the Y1Y3 plane, with the direction in which this angle is measured being in agreement
with the direction of the Y2 axis.
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Of the external torques applied to the satellite, we will only take the gravitational one into account. In this case, the theorem on the
variation of the kinetic moment of rotational motion of the satellite is written as follows:

(1.1)

Here K is the kinetic moment of the satellite in its motion relative to the centre of mass. I1 and I2 are the polar and equatorial principal
central moments of inertia of the satellite, n is the unit vector of the x1 axis and E3 is the unit axis of the Y3 axis.

In the case
∣∣K

∣∣ ≈ K · n = K1 we take K = K1n. Substituting this approximate relation into Eq. (1.1), we obtain

The scalar product of the latter equation by n gives dK1/dt = 0. Consequently, K1 can be taken as a parameter. We  write the equation

(1.2)

in the orbital coordinate system Y1Y2Y3. In this case

The symbol d̃/dt denotes the local derivative of the vector in the orbital system, and E2 is the unit vector of the Y2 axis. Substituting
the above expressions into Eq. (1.2), we obtain three equations in the derivatives d�/dt and d�/dt. These equations are consistent since Eq.
(1.2) admits the integral relation n · n = 1. We  have

(1.3)

Equations (1.3) coincide with the so-called evolutionary equations obtained and investigated by V. V. Beletskii [2] (in place of the angle �
he used the angle �/2 − ˇ). More accurately, Eqs (1.3) are a particular case of them, corresponding to rapid rotation of an axially symmetric
satellite about its symmetry axis. Beletskii considered the more general problem, when rapid rotation of such a satellite is close to regular
Euler precession. However, the transformation to the more general case only alters the form of the constant factor � in an unfundamental
way.

Equations (1.3) admit a first integral:

and can be integrated. Beletskii found the exact general solution of Eqs (1.3) in elliptic Jacobi functions, and also, applying the method
of averaging, obtained approximate formulae for the solution for |�| � ω0.

In this case, � is a fast variable, and � is a slow variable; averaging of Eqs (1.3) over � gives

In the general solution of the averaged equations, � = const and � is a linear function of time. For |�| � ω0 the exact solutions of Eqs (1.3),
lying outside a small neighbourhood of the poles � = ± �/2 of the sphere n · n = 1, are periodic. For each solution, a number T > 0 (period),
exists such that in this solution

The periodicity condition for � is written with allowance for the circumstance that this variable enters into Eqs (1.3) periodically with
period �. The period of motion of the x1 axis, described by such a solution, with respect to the orbital coordinate system is equal to 2T.

Below, we assume that
∣∣K

∣∣ ≈ K1 and that |�| � ω0. We  prove the existence of periodic motions of the unit vector n with respect to the
orbital coordinate system that are close to the solutions of Eqs (1.3). In order to describe the problem in greater detail, we  write relation
(1.1) in the system x1x2x3. In this case,
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