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a  b  s  t  r  a  c  t

Two  non-linear  oscillatory  systems  are  considered.  The  first is  a  point  mass  on  a  spring  with  vertical
vibration  of the  suspension  point  with  a frequency  that  coincides  with  the  frequency  of free  vertical
oscillations  and  is two times  greater  than  the  frequency  of  free  horizontal  oscillations.  The  friction  force
in  the  spring  is taken  into  account.  For an  initial deviation  of  the  point  mass  from  the  vertical,  after  a long
enough  time  the  energy  of the vertical  oscillations  is almost  completely  transferred  into  the  energy  of
horizontal  oscillations.  Using  an  averaging  method,  an  asymptotic  solution  is  constructed,  describing  the
transient  process  setting  up a periodic  solution.  Comparison  of  the  analytical  solution  with  the numerical
one  demonstrates  its high  accuracy.  The  second  system  is  an  axisymmetrical  bubble  in a  liquid  under
the  variable  pressure.  An analogy  between  this system  and  the  previous  one  is established.  Vibration
of  the  suspension  point  of a spring  pendulum  corresponds  to variable  liquid  pressure,  and  the  vertical
and  horizontal  oscillation  modes  of the swinging  spring  correspond  to  the  radial  and  deformational
oscillation  modes  of the  bubble,  and the  ratio  of  the frequencies  of  these  modes  is  also  taken  to be  equal
to  two.  The  friction  force  in the  spring  corresponds  to  energy  dissipation  under  radial  oscillations  of
the  bubble.  In  our  calculations  of  energy  dissipation,  we take  into  account  the  liquid  viscosity,  thermal
dissipation,  and  acoustic  radiation  due  to liquid  compressibility.  During  transfer  of the energy  of the
radial  oscillations,  the  amplitude  of the  resonant  deformational  mode  of the bubble  oscillations  grows
anomalously,  which  makes  it possible  for the bubble  to  break up with  small  energy  dissipation  under  the
action  of  a time-varying  external  pressure  field.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

The problem of free planar oscillations of a swinging spring at the 2 : 1 resonance was  introduced by Vitt and Gorelik1 in a description of
an experiment in which periodic transfer of the energy of the vertical oscillations of a pendulum into horizontal oscillations was observed.

It has been remarked (Ref. 2, p. 106) that this experiment was  proposed by Mandel’shtam to illustrate some peculiarities of the vibrations
of the CO2 molecule, which Fermi had discovered3 while analysing the Raman spectra of gaseous CO2. In the CO2 molecule the frequency
of the longitudinal mode practically coincides with twice the frequency of the transverse mode, which leads to a modulation regime of
energy exchange between vibration modes of the molecule. This leads to the appearance of additional bands in the Raman spectra. A spring
pendulum with two oscillatory degrees of freedom is the simplest classical analogue of such a system, and Mandel’shtam, Vitt and Gorelik
also turned their attention to it.

Since that time, the problem of the free oscillations of a swinging spring has attracted the attention of many investigators. There is a
review4 of the results of a qualitative analysis of this problem. In particular, it has been shown that oscillations strictly along the vertical
are unstable. For a small deviation along the horizontal, there is a gradual transition of the vertical oscillations into horizontal oscillations,
and the main asymptotic limit of the transfer period has been calculated.

An asymptotic solution of the planar problem at the 2 : 1 resonance has been constructed, describing the periodic process of energy
transfer in terms of elementary functions,5,6 and an asymptotic solution in the case of forced planar oscillations of a swinging spring with
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dissipation in the spring taken into account has also been constructed, where the vibration frequency coincides with the frequency of the
vertical natural oscillations and is twice the natural frequency of oscillations along the horizontal.7

In two previous papers, 8,9 we established an analogy between the natural oscillations of a spring and those of a bubble in a liquid under
resonance conditions. We  showed in these papers that as energy is transferred, the amplitude of the deformational mode grows, and this
can be one of the mechanisms of bubble breakup. A substantial shortcoming of these works is the absence of dissipation in the models
proposed. Energy losses attendant to radial oscillations of a bubble lead to the result that the free radial oscillations of the bubble die out
before energy transfer to the deformational mode begins.

The calculations presented below fill this gap. What is new in the formulation that follows consists in an investigation of forced non-
linear oscillations of a bubble in a liquid, taking dissipation into account, under the external pressure varying with the frequency of the free
radial oscillations of the bubble. As a result of energy being pumped in by the external variable pressure in parallel with energy dissipation,
periodic non-decaying oscillations of the bubble are set up. The oscillations are investigated under the condition of a 2 : 2 :1 resonance
between the frequencies of the external pressure field and the radial and deformational oscillation modes of the bubble. The main idea,
with the help of which we realised this study, was to apply methods developed earlier to solve the problem of non-linear forced oscillations
of a swinging spring7 and to establish an analogy between these two problems.

It was shown that the effect of resonant energy transfer can lead to a quite large amplitude of the deformational oscillations of a bubble
for a relatively small amplitude of the exciting pressure wave, which can bring about bubble breakup, as was observed in experiments.10

This effect can have important technological and medical applications, for example, in breaking through the hemato-encephalic barrier,11

and also serve as one of the mechanisms for revealing the sub-harmonics in the spectrum of an irradiated bubble.12

2. Statement of the problem on forced oscillations of a swinging spring.

In a Cartesian coordinate system with its x and z axes directed in the horizontal and vertical directions, respectively, we consider a
pendulum with two degrees of freedom: a heavy point swinging while suspended from a weightless spring (Fig. 1). The suspension point
vibrates in the vertical with acceleration w0 = −a�′2 cos �′t′, and the rest position of the load, the point O, is located at the origin of the
coordinate system x = 0, z = 0. We  introduce the following notation: c is the stiffness of the spring, l0 is the length of the unloaded spring, l
is its length for the rest position of the load, m is the mass of the load, lx and lz are the coordinates of the load, lR is the length of the spring,

and R =
√

x2 + (1 + z)2. The tension of the spring is proportional to its elongation T = c(lR − l0)/l0.
It is convenient to investigate non-linear oscillations using the Hamiltonian form of the equations. The potential Ep and kinetic Ec

energy of the system in the non-inertial coordinate system bound to the suspension point have the form (the dot above a symbol denotes
differentiation with respect to dimensionless time t, dimensional time is t′)

In this system there are three frequencies: the Huygens frequency of the horizontal oscillations �x and the vertical oscillations frequency
�z:

and the prescribed vibration frequency of the suspension point �′. It follows from the equilibrium conditions that K� = 1, and from the
resonance conditions �′ = �c = 2�x we obtain K = 3 and � = 1/3.
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