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a  b  s  t  r  a  c  t

Problems  on  oscillations  of an elastic  weightless  membrane  stretched  over  a  rigid  circular  ring, induced
by  normal  and  tangential  incidence  on  it of  a body  in  the  form  of  a disc  of radius  small  compared  to  the
ring  radius,  are  considered.  According  to  existing  theory,  the  large  two-dimensional  deformations  that
arise  are described  by  nonlinear  partial  differential  equations,  but the  main  parameters  of motion  of  the
membrane  can  be estimated  using  simpler  models  proposed  here.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Central collision of a body with an elastic weightless membrane

We  consider motion of a body of unit mass in the form of a disc of radius � � 1 colliding with an elastic weightless membrane stretched
across a rigid ring of unit radius (Fig. 1). As the unit of time we take the ratio of the ring radius to the body velocity at the moment of
contact with the membrane. At the initial time, the disc and the membrane are found in the same plane, and their centres coincide. The
initial velocity of the disc � (at the time of collision with the membrane) is directed along the normal to the plane of the membrane (Fig. 1,
Case a).

We choose a fixed coordinate system Oxyz with origin at the centre of the ring with the z axis directed along the normal to it, and z1 is
the z coordinate of the centre of the disc (z1 ≥ 0). By virtue of symmetry (only the action of elasticity forces is taken into account), the disc
centre will move along the z axis, stretching the membrane. The aim of the present work is to describe the motion of the disc under the
action of elastic forces.

In what follows we consider membranes, the potential energy of an element of which upon extension of the membrane is proportional
to its area ds : dV = � dS (� is the coefficient of surface tension or elasticity). In order to determine the elasticity forces, we must find the
shape of the membrane being extended. Since the membrane is assumed to be weightless, the shape of its surface between the body and
the support ring has the form of a catenoid1 (Fig. 1, Case a). The meridian of the catenoid, lying in the right half-plane xz (x > 0) is a catenary1

(1.1)

The constants C1 and C2 are determined from two  prescribed points on the catenary: the point (1,0) on the fixed ring over which the
membrane is stretched, and the point (�, z1) corresponding to the position of the disc, i.e.,

(1.2)

Conditions (1.2) give two representations for the z coordinate of the disc centre z1 in terms of the constant C1:

(1.3)
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Fig. 1.

where

(1.4)

Leaving details aside, we can indicate the values C1 = C+
1 and C1 = C−

1 at which the derivatives with respect to the constant C1 of the z
coordinate of the disc centre z1 from expressions (1.3) remain positive (the plus and minus superscripts correspond to those in expressions
(1.3))

(For example, for � = 0.1 we have C+
1 ≈ 0.086 and C−

1 ≈ 0.12.)
It can be shown that at least for � < 0.1 the value of C−

1 > �. This guarantees monotonicity of the function z±
1 in the interval 0 < C1 <

C−
1 < �. Numerical calculations show that monotonicity of dependences (1.3) is preserved for values of � < 0.1. In this case, a disc of radius

�, as it stretches the membrane, is found below the minimum cross section of the catenoid as long as C1 < �. (For choice of the plus sign in
expression (1.3), on the contrary, the minimum cross section lies between the disc and the ring.) The case of motion of the disc for z1 > C2(�)
is not considered here.

Relations (1.3) define two families of meridians (1.1) of the catenoid.
In Fig. 2 for � = 0.1 and z±

1 = 0.01 the dashed curve plots the meridian of the first family (1.1) (the plus sign in expressions (1.3))
with parameters C+

1 = 7.408 · 10−4 and C+
2 = 5.853 · 10−3, and the solid curve plots the meridian of the second family C−

1 = 4.342 · 10−3,
C−

2 = 2.663 · 10−2. (The case of non-uniqueness of the extremal was noted, for example, in the problem of the brachistochrone.2)
From a physical point of view, deformation of the membrane should depend continuously on the z coordinate of the disc centre z1. The

types of the meridians are preserved in the region of definition of z1. Numerical examples confirm that the surface area of a truncated
catenoid of the second type (a catenoid bounded by the z = 0 and z = z1 planes)

(1.5)

is less than the surface area of a truncated catenoid of the first type. It can be represented with arbitrarily assigned accuracy in the form of
a polynomial in z1 on the interval [0,  C−

1 ]. Expression (1.5) has an indeterminacy at z1 = 0. Using the standard method it is possible to show
that S1(0) = �(1 − �2).

Motion of the disc on the membrane is described by the energy integral

(1.6)

where �S10 is the area increment of the membrane with respect to the unperturbed state and ż0 = ż(0) is the disc velocity before the
collision. In Fig. 3 the dashed curve plots the function s10 = �S10/� for � = 0.1.

Defining the smallest positive root zmin of the equation ż2
0 − 2��S10 = 0 (for example, from the graph in Fig. 3), we  find the maximum

sag of the membrane.
If the right hand in Eq. (1.6) is represented in the form of a polynomial of fourth degree in z1, the solution of this equation can be

expressed in terms of Weierstrass functions.3 Considering s10 as a function of the parameter C1, we obtain the phase trajectory of the disc.
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