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h i g h l i g h t s

• A complete dynamical model of a plate with Hertzian contact and in an axial flow is developed.
• The reactive fluid force is solved by the Glauert’s method, and the viscous effect is evaluated as a resistive fluid force.
• A heuristic analysis scheme constructed upon the equivalent linearized method is applied for nonlinear limit cycles flutter.
• The system experiences flutter instability, limit cycles flutter, lock-in motions, quasi-periodic motions and quasi-periodic divergence.
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a b s t r a c t

This paper is aimed at the nonlinear flutter of a cantilevered plate with Hertzian contact in
axial flow. The contact effect is modeled as a nonlinear spring force with both square and
cubic nonlinearity. The fluid force is considered as the sum of two parts, one is the reactive
fluid force due to platemotion and the other is the resistive fluid force independent on plate
motion. The reactive fluid force is derived by solving the bound andwake vorticity with the
help of Glauert’s expansions, and the resistive force is evaluated in terms of drag coefficient.
The governing nonlinear partial differential equation of the system is discretized in space
and time domains by using the Galerkin method. Results show that the plate loses its
stability by flutter and then undergoes limit cycle motions due to the contact nonlinearity
after instability. The present fluid model is reliable and shows good agreement with
other theories archived. A heuristic analysis scheme based on the equivalent linearization
method is developed for the analysis of bifurcations and limit cycles. The Hopf bifurcation
is either supercritical or subcritical, which is closely dependent on the contact location.
For some special cases the bifurcations are, interestingly, both supercritical and subcritical.
When the plate experiences limit cycles, with the increasing dynamic pressure there firstly
appear the lock-in motions; and then the quasi-periodic motions show up as a breaking
of limit cycle by inclusion of a secondary significant frequency with an irrational value of
1
4π of the dominant limit cycle frequency. Finally the plate undergoes dynamic buckling
characterized by quasi-periodic divergence when the dynamic pressure is relatively large.
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1. Introduction

Plates immersed in uniform axial flow can be found many applications in science and engineering, such as for aircraft
and missile skins (Dowell, 1975, 1967) in supersonic flow, and for paper-making (Watanabe et al., 2002b, a), electricity
generation (Allen and Smits, 2001) and aircraft control (Breuker et al., 2008) in low-speed flow. An early excellent
monograph on this problem was published by Dowell (1975) and a recent review was presented in the book by Païdoussis
et al. (2010).

More recently, this problem has received a renewed application for high-speed trains. It is well known that the record
of the maximum train speed during test is being bettered constantly in recent decades. However, high-speed running
conditions result in some unavoidable aerodynamic problems (Raghunathan et al., 2002; Zhu et al., 2014). Such problems
are receiving more andmore attention as a practical engineering issue requiring urgent resolutions. And the optimization of
aerodynamic performance has been one of the main objective of the high-speed trains design for low energy consumption,
high safety and stability requirements (Raghunathan et al., 2002; Ding et al., 2016). The high-speed trains generally adopt
the streamlined design to decrease running resistance, thus thin plate structures such as the train body skin are widely used.
As shown in Fig. 1, the train skin composed of many pieces of plates is welded onto the train keels. These plates traveling at
high speed through air can be easily excited by fluid enveloping them. For instance, in the test ofWuhan–Guangzhou railway
passenger dedicated line of China, severe vibrations of the train-body skin and strong noise radiation are observed when the
CRH-3 trains moved at almost 450 km/h (a test speed higher than the practical commercial running speed of 300 km/h).

In fact the above problems involve the studies of both fluid and plate mechanics fundamentally, and are the typical
aero-elastic (or fluid–structure interaction) problems. The main feature of such problems is that the plate responses also
modify the fluid forces in a feedback sense when such fluid forces excite the plate. A plate vibrating in flow may experience
instability. The type of instability, either static (divergence) or dynamic (flutter) is closely dependent on both the plate
boundary conditions and flow velocity. For instance, a plate fixed at its both ends (simply supported or clamped) undergoes
divergence in low speed flow (Kornecki et al., 1974; Li et al., 2012) but flutter instability in supersonic flow (Dowell, 1975,
1967); conversely, if a plate is cantilevered at one end and free at the other, it flutters in low speed flow but undergoes
divergence in supersonic flow (Kornecki et al., 1974). Roughly speaking, the instability type is mainly dependent on the
contribution of the fluid force to the plate. From the previous results (Dowell, 1975, 1967; Kornecki et al., 1974; Li et al.,
2012), it follows that the fluid force is proportional to the plate’s slope in supersonic flow but to the plate’s curvature in low
speed flow.

On the aero-elastic instability of a plate in flow, relevant researches are generally carried out within the framework of
linear modeling and theory. Despite its simplicity, these models can describe the most important nature of plate instability.
Although the plate is almost modeled as the same linear beam, the results are totally different if the fluid force is calculated
by different theories. A simply supported plate was reported to flutter when it is exposed to an airflow of Mach number of
0.125 by Dugundji et al. (1963), and this result was also verified by their wind tunnel test. In Dugundji et al. (1963), the fluid
force was considered to be that on an infinite long wavy (sinusoidal) wall, and was obtained by the plate modes expansion.
However, Ishii (1965) shown that such a simply supported plate loses its stability by divergence; in this work, the flow
velocity potential was expressed by a time varying sources distribution on the plate, and the fluid force was obtained by the
standard mode method. The results by Ishii (1965) are in agreement with those by Kornecki et al. (1974), who applied the
Theodorsen’s theory for the fluid force. In fact, flutter of plates with both ends fixed (simply supported or clamped) has not
been reported either as theory or experiment in the relevant literatures as explored by the authors (Li et al., 2012; Ellen,
1977; Guo and Paidoussis, 2000).

As previously noted that if the fluid is modeled by different theories, a plate fixed at its both ends may undergo different
type instability; however, as for a cantilevered plate there is almost a consensus on its flutter instability (Kornecki et al.,
1974; Zhang et al., 2000; Datta and Gottenberg, 1975; Huang, 1995; Balint and Luccy, 2005; Yamaguchi et al., 2000; Tang et
al., 2009; Tang and Paidoussis, 2007; Tang et al., 2003; Shayo, 1980). The main purpose of relevant studies on plate flutter is
to give a theoretical prediction of the critical flow velocity and frequency in terms of plate parameters. Datta and Gottenberg
(1975) examined this problem with the fluid force obtained from the slender wing theory. Huang (1995), Kornecki et al.
(1974) and Shayo (1980) used the Theodorsen’s theory for the fluid force to study plate flutter. Balint and Luccy (2005),
on the other hand, applied a Navier–Stokes solver for the fluid force. Yamaguchi et al. (2000) applied a linear time variable
vortexmodel considering the sheddingwake for fluid, andmodeled the plate as a lifting surface.Watanabe et al. (2002b) used
both the Theodorsen’s theory and Navier–Stokes solver to form the fluid force. A two-dimensional and a three-dimensional
vortex lattice methods for plate flutter are respectively reported by Tang et al. (2009), Tang and Paidoussis (2007) and Tang
et al. (2003). Li et al. (2015); Li and Yang (2014) modeled the flow force by using a time-dependent source on the plate and
considered the plate as a lifting surface. Moreover, a series of experiments on the fluttermechanism have been conducted by
Zhang et al. (2000) and Shelley et al. (2005) in water flow and by Kornecki et al. (1974), Datta and Gottenberg (1975), Tang
et al. (2009), Tang and Paidoussis (2007) and Watanabe et al. (2002a) in wind tunnel. These experiments corroborate the
stability criteria predicted by theoretical analysis: the stabilizing effect of decreasing flow velocity, decreasing plate length,
decreasing plate mass and increasing plate bending rigidity.

Another interesting aspect of plate aero-elastic problems is the post-instability dynamics due to nonlinearity. Such
nonlinearity generally comes from both the plate structure and the flow. One common type structural nonlinearity arises
from the large amplitude vibration of the plate. The limit cycle flutter of a cantilevered plate in axial flow was examined
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