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a b s t r a c t

Modal decompositions such as proper orthogonal decomposition (POD), dynamic mode
decomposition (DMD) and their variants are regularly used to educe physical mechanisms
of nonlinear flow phenomena that cannot be easily understood through direct inspec-
tion. In fluid–structure interaction (FSI) systems, fluid motion is coupled to vibration
and/or deformation of an immersed structure. Despite this coupling, data analysis is often
performed using only fluid or structure variables, rather than incorporating both. This
approach does not provide information about the manner in which fluid and structure
modes are correlated. We present a framework for performing POD and DMD where
the fluid and structure are treated together. As part of this framework, we introduce a
physically meaningful norm for FSI systems. We first use this combined fluid–structure
formulation to identify correlated flow features and structural motions in limit-cycle flag
flapping. We then investigate the transition from limit-cycle flapping to chaotic flapping,
which can be initiated by increasing the flag mass. Our modal decomposition reveals that
at the onset of chaos, the dominant flapping motion increases in amplitude and leads
to a bluff-body wake instability. This new bluff-body mode interacts triadically with the
dominant flapping motion to produce flapping at the non-integer harmonic frequencies
previously reported by Connell and Yue (2007). While our formulation is presented for
POD and DMD, there are natural extensions to other data-analysis techniques.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Modal decompositions such as proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) have
been used to distill important physical mechanisms from data and to develop reduced-order models for turbulent wall-
bounded flows (Berkooz et al., 1993), flow past a cylinder (Chen et al., 2012; Bagheri, 2013), and a jet in cross-flow (Rowley
et al., 2009; Schmid, 2010), to name a few examples.

These techniques were developed for flows involving (at most) stationary immersed surfaces, and have been applied less
extensively to fluid–structure interaction (FSI) problems, where the fluid motion is coupled to deformation and/or vibration
of an immersed structure. In this FSI setting, data analysis has, to our knowledge, only been applied to data of either the fluid
or the structure independently of the other. The fluid-only approach has been used to study flow past a flexible membrane
(Schmid, 2010), a cantilevered beam (Cesur et al., 2014), and an elastically-mounted cylinder undergoing vortex-induced
vibration (Blanchard et al., 2017). The solid-only approach has been applied to fish swimming (Bozkurttas et al., 2009;
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Tangorra et al., 2010) and flag flapping (Michelin et al., 2008; Kim et al., 2013). These approaches reveal significant flow
or structure behavior, respectively, but do not yield driving mechanisms in the omitted quantity. This in turn leaves the
correlation between fluid and structure behavior unknown.

We propose a framework for data analysis of FSI systems where the fluid and structure are treated together, which
naturally allows correlation between the fluid and structure to inform the resulting modes of the fully-coupled system.
As part of this formulation, we define a norm in terms of the total mechanical energy of the FSI system. This combined
fluid–structure data-analysis procedure is then demonstrated on limit-cycle flapping and chaotic flapping of strictly two-
dimensional flags.

In the case of chaotic flapping, previous work identified that for flags of low stiffness, chaos can be triggered by increasing
the flagmass (Connell and Yue, 2007; Alben and Shelley, 2008). For flows atmoderate Reynolds numbers ofO(1000), Connell
and Yue (2007) showed that the flag system transitionswith increasingmass froma stable equilibrium to limit-cycle flapping
of increasing amplitude, then to chaotic flapping. Alben and Shelley (2008) found similar transitions in inviscid fluids. In the
viscous case, the transition to chaos is associated with the appearance of a distinct frequency that is a noninteger harmonic
of the dominant flapping frequency (Connell and Yue, 2007), though the cause of this new frequency signature is as yet
unexplained. We use our coupled FSI decomposition to identify the mechanism responsible for the appearance of this
noninteger frequency harmonic.

We focus here on proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) because of their
widespread use and their expected suitability for the problems considered here. The limit-cycle case described in Section 3.1
is associated with one dominant frequency, and thus DMD is a natural candidate because of its localized harmonic nature
(Mezić, 2013). POD is also expected to be suitable because of the near-harmonic decomposition it typically yields for limit-
cycle flows (such as occurs in vortex shedding past a cylinder near the critical Reynolds number of approximately 47; see,
e.g., Kutz et al., 2016). For the chaotic flapping problem described in Section 3.2, the non-broadband (‘peaky’) nature of the
dynamics again makes DMD a fitting technique. However, POD and DMD are not ideal for all contexts. For example, Towne
et al. (2018) demonstrated that in statistically stationary flows with broadband frequency content — as observed in the
majority of turbulent flows — spectral POD provides an optimal decomposition. The major goal of the current work is to
demonstrate the utility of performing data analysis in a manner that accounts for both the fluid and the structure, rather
than explore the advantages of any particular technique, a question which in any event depends on the specific FSI problem
under consideration. Future work can readily incorporate the methodology presented here into the appropriate technique
for the intended application.

2. POD and DMD of fluid–structure interaction

We consider snapshot-basedmethods applied to discrete data. The associated datamatrices are assumed to be organized
so that each columnprovides the state of the systemat an instance in time and each row contains the timehistory of a specific
state variable. For simplicity, the formulation is presented in a two-dimensional setting; the extension to three dimensions
is straightforward.

We assume fluid data is given on a stationary Cartesian grid, Ω , made up of nf points (Ω ⊂ R1×nf ), and let the
streamwise and transverse fluid velocities at the ith time instance, ti, be ui, vi ∈ Ω . Fluid data is often provided in this
format by immersed-boundary methods and experiments; some numerical methods use moving meshes at each time step
that conform to the moving structure, and fluid data obtained from these methods would need to be interpolated onto a
single stationary grid at each time instance to use the method we propose here.

We consider structural data provided in a Lagrangian setting, with the structural domain, Γ , comprised of ns points
(Γ ⊂ R1×ns depends on time). We let χi, ηi ∈ Γ denote the streamwise and transverse structural displacements from an
undeformed reference configuration at the ith time instance, and ξi, ζi ∈ Γ be the corresponding structural velocities. We
define the total state vector at ti as yi = [ui, vi, χi, ηi, ξi, ζi]

T
∈ R2nf +4ns , and define the datamatrix, Y ∈ Rn×m (n = 2nf +4ns

is the size of the state andm is the number of snapshots), as Y = [y1, . . . , ym].
POD modes are computed from the mean-subtracted data matrix, Ỹ, whose ith column is defined as Ỹi = Yi − µ, where

µ = 1/m
∑m

k=1yk is the sample temporal mean of Y. For DMD, Chen et al. (2012) found that the use of Ỹ reduces DMD to a
discrete Fourier transform in time, and that using Y allows for growth-rate information to be retained. For this reason, DMD
is performed on Y below.

The immersed structure is assumed to be thin in the ensuing discussion, as occurs for problems involving flags, bio-
inspired wings and fins, spring-mounted flat plates, etc. For bodies of non-negligible thickness, points on Ω lie within the
immersed body at any time instance, leading to spurious contributions from the ‘fictitious fluid’ within Ω ∩ Γ . Addressing
this challenge is a subject of future work.

2.1. Proper orthogonal decomposition

POD decomposes the data into orthogonal spatially uncorrelated modes that are ordered such that the leading k modes
(k ≤ m) provide the most energetically dominant rank-k representation of Ỹ. This optimal representation is defined with
respect to a norm, and we therefore select an inner product space whose induced norm yields the mechanical energy of the
FSI system. We first motivate this choice of norm within a continuous-variable setting, and subsequently provide details
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