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a b s t r a c t

The frequency-domain and time-domain response of a floating ice shelf towave forcing are
calculated using the finite element method. The boundary conditions at the front of the ice
shelf, coupling it to the surrounding fluid, are written as a special non-local linear operator
with forcing. This operator allows the computational domain to be restricted to the water
cavity beneath the ice shelf. The ice shelf motion is expanded using the in vacuo elastic
modes and themethod of addedmass and damping, commonly used in the hydroelasticity
of ships, is employed. The ice shelf is assumed to be of constant thickness while the fluid
domain is allowed to vary. The analysis is extended from the frequency domain to the
time domain, and the resonant behaviour of the system is studied. It is shown that shelf
submergence affects the resonant vibration frequency, whereas the corresponding mode
shapes are insensitive to the submergence in constant depth. Further, themodes are shown
to have a property of increasing node number with increasing frequency.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

We are interested in modelling the impact of very long ocean surface waves on ice shelves, primarily waves in the
tsunami–infragravity regime. The phenomenon has been the subject of recent observations and measurements (Cathles
et al., 2009; Bromirski et al., 2015, 2017), which have shown that there is substantial coupling between ocean waves and ice
shelf vibrations. MacAyeal et al. (2006) provide evidence of a connection betweenwave-induced vibrations and shelf calving
and possible collapse, although the strength of the connection remains unknown.

In the present work, we describe bespoke code to calculate the time-dependent response of an ice shelf to wave forcing,
using the finite element method, and with a focus on understanding resonant responses. Following the majority of other
similar modelling studies in this area (e.g. Holdsworth and Glynn, 1978, 1981; Vinogradov and Holdsworth, 1985; Fox and
Squire, 1991; Sergienko, 2010; Bromirski and Stephen, 2012), we model the ice shelf as a thin elastic plate floating on an
inviscid, irrotational fluid, and assume linearmotions, on the basis of the longwavelengths/small amplitudes involved. Thus,
the coupled oceanwave/ice shelf vibration problem is a sub-problem in the field of hydroelasticity, i.e. the study of the effects
of fluids on elastic bodies, for which there exists a far larger corpus of mathematical modelling literature (e.g., see the review
by Squire, 2008). The model is two-dimensional, with one horizontal dimension and one depth dimension, and the ice shelf
is of finite length, clamped at the landward end and free at its seaward end. Ice shelf vibrations are excited by an incident
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wave from the open ocean, where the open ocean is modelled as a semi-infinite interval of free-surface water that abuts the
ice shelf and sub-ice shelf water cavity. The shelf front partially reflects the incident wave, but the remaining proportion of
the incident wave penetrates the shelf–cavity region, causing the shelf to vibrate. The vibrations radiate waves into the open
ocean so that eventually all of the incident wave energy is scattered away from the shelf.

The finite element method is well suited to the analysis of hydroelastic systems, and Sergienko (2017) recently used
commercial finite element code to compute vibrations of the Ross Ice Shelf. However, care needs to be taken in applying
the finite element method when the ice shelf and sub-ice shelf–cavity are coupled to the open ocean, as this creates a semi-
infinite scattering domain.Weovercome this technical challenge by including a non-local linear operator boundary condition
to represent the incident and scattered waves.

We use the finite element method in conjunction with an expansion of the ice shelf vibrations, using its in vacuo (dry)
modes of vibration. The in-vacuomode expansion has been used in other linear hydroelastic scattering problems (e.g. Bishop
et al., 1986; Meylan and Squire, 1994; Newman, 1994; Meylan, 2002), as a generalization of the standard expansion for rigid
bodies. It is the basis for the most sophisticated contemporary hydroelastic models, developed to analyse, for example, the
motion of container ships (e.g. Hirdaris et al., 2003; Huang and Riggs, 2000; Senjanovic et al., 2008, 2009).

Vibrations of the floating ice shelf involve coupled elastic-fluid modes, which are difficult to calculate. Sergienko (2013)
and Meylan et al. (2017) approximated themby applying a no-flux condition at the interface between the open ocean and the
ice shelf–cavity, but it is not clear whether this gives a good approximation, and, further, we cannot say anything about how
strongly they are excited or howquickly they decay in timewithout coupling to the surrounding ocean.Moreover, Sergienko
(2013) and Meylan et al. (2017) considered shallowwater.We use amethod proposed in Wang andMeylan (2002),modified
to allow for ice shelf submergence, to couple the cavity with the open ocean. This connection is critical to apply the finite
elementmethod correctly andwould be difficult to implement in commercial finite element code, as the boundary condition
is non-local and requires a linear operator.

Models of floating ice shelf vibrations typically assume shallow-water conditions (e.g. Sergienko, 2013; Meylan et al.,
2017), on the basis of the long wavelengths. This assumption greatly simplifies the mathematical analysis of the problem
and has been adopted in other areas of hydroelasticity (e.g. Zilman and Miloh, 2000; Meylan, 2002). The method developed
here does not make this assumption, thus giving a process to validate the shallow water assumption. The problem of the
motion of elastic plates on water of finite length has been the subject of extensive study and many different semi-analytic
methods have been proposed (e.g. Meylan and Squire, 1994; Kohout et al., 2007; Bennetts et al., 2007; Gayen and Mandal,
2009; Behera and Sahoo, 2015; Renzi, 2016). Some of these methods could be adapted to model ice shelves, provided that
some simplifying assumptions were made, the most significant which is that the depth under the ice shelf is constant. Such
methods would complement themore numerical approach used in the current work. Other numerical approaches that relax
the assumption of linearity could also be used, such as that of Guyenne and Părău (2017).

Themost important practical calculation is the response of an ice shelf to a time-dependent forcing since the energy in the
ocean travels in wave packets and it is the response in time which is measured. The frequency domain solution represents
the equilibrium response to longtime forcing, and it is more appropriate towave tank experiments (the basis for engineering
tests). Moreover, care must be taken in interpreting the results from the frequency domain because very large responses in
the frequency-domain are often difficult to excite in the time-domain.

The outline of this work is as follows. The equations of motion in the time domain and frequency domain are given in
Section 2. In order to formulate a boundary value problem, we derive a boundary condition for the bounded domain using
the wave incident from the semi-infinite domain in Section 4. We define the boundary condition in the ice shelf–cavity and
the solution for the velocity potential in Section 5, using the added mass and damping matrix to solve the coupled problem.
In Section 6, we introduce the finite element method and its discretization. We use the finite element method to calculate
the potential solution associated with no motion and with each in vacuo mode. In Section 7 we show how to compute the
time-dependent solution. Numerical results for frequency domain are presented in Section 8.1, and time-domain results in
Section 8.2. Finally, Section 9 gives a brief summary.

2. Problem formulation

The goal of our work is to show howwe can calculate vibrations of a floating ice shelf by using the finite element method.
A critical technical difficulty that will be overcome is associated to the application of boundary conditions that couple the
sub-shelf water cavity to the open ocean.

Fig. 1 shows a schematic of the problem. Positions in the water are described using the Cartesian coordinates x = (x, z),
where x is the horizontal coordinate, and z is the vertical coordinate. The open ocean region is

x ∈ Ω−
= {(x, z) : x < −L,−h0 < z < 0}, (1)

where z = 0 is the equilibrium free surface of the open ocean, z = −h0 is the seabed (assumed flat), and x = −L is the
location of the ice shelf front. The sub-shelf cavity region is

x ∈ Ω = {(x, z) : −L < x < 0,−h(x) < z < −d}, (2)

where z = −d is the underside of the ice shelf, x = 0 is the location of the landward end of the shelf, and z = −h(x) is the
location of the varying bed beneath the shelf. We assume that the depth of the water only varies under the ice shelf so that
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