Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Semi-analytical unsteady aerodynamic model of a flexible thin airfoil

^a Department of Mechanical and Aerospace Engineering, "Sapienza" University of Rome, via Eudossiana 18, Rome 00184, Italy

^b Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", viale A. Lincoln 5, Caserta 81100, Italy

^c Maritime Research Center, National Research Council of Italy, via di Vallerano 139, Rome 00128, Italy

HIGHLIGHTS

- A semi-analytical model for the unsteady aerodynamics of a flexible thin airfoil is proposed.
- The model generalizes mapping functions and the complex potential to arbitrary motions.
- Free wake modeled using discrete vortices is also included.
- The aerodynamic pressure load on the airfoil is evaluated analytically in space.
- Results for an airfoil with curvature of constant sign along the chord are presented.

ARTICLE INFO

Article history: Received 18 September 2017 Received in revised form 2 February 2018 Accepted 8 April 2018

Keywords: Unsteady aerodynamics Deformable airfoils Arbitrary motion Discrete-vortex methods

ABSTRACT

This paper presents a geometrically exact semi-analytical approach to model the unsteady aerodynamics of a flexible thin airfoil in incompressible potential flow. The velocity field is described by a complex potential, which is developed by mapping the airfoil boundary onto a circle. This methodology, well established for small disturbances, is here generalized to evaluate the aerodynamic load on an airfoil subject to prescribed arbitrary rigid-body motion and deformation. The model also includes the effects of free wake, modeled by a large number of discrete vortices. A general semi-analytical solution for the aerodynamic pressure distribution is obtained, specialized to the case of curvature of constant sign along the airfoil chord, and validated with reference linearized results. Next, the model validity for large curvatures is discussed by comparing velocity fields around increasingly deformed airfoils with numerical solutions from suitable panel methods. Finally, results for a cantilevered flexible airfoil subject to prescribed deformation in a steady axial flow are presented to point out different unsteady mechanisms influencing the aerodynamic pressure distribution and responsible for its changes in time. This insight is peculiar of the semi-analytical nature of the present formulation and cannot be easily obtained through numerical handling of the problem. The paper ends by outlining future developments of the present work toward the ultimate goal of studying coupled fluid-structure interaction problems in presence of very large deformations.

© 2018 Elsevier Ltd. All rights reserved.

* Corresponding author. *E-mail address:* franco.mastroddi@uniroma1.it (F. Mastroddi).

https://doi.org/10.1016/j.jfluidstructs.2018.04.001 0889-9746/© 2018 Elsevier Ltd. All rights reserved.

Nomenclature

Latin symbols

\boldsymbol{a}_k	k th complex coefficient in $ ilde{oldsymbol{\Phi}}^{(v)}$
b	half chord
\mathcal{BC}_k	kth branch cut of the map in the fluid domain
\mathcal{BCP}_k	preimage of \mathcal{BC}_k in the auxiliary plane
\boldsymbol{b}_k	ratio $\boldsymbol{a}_k / \boldsymbol{w}_k$
ΔC_p	pressure jump coefficient
C	unit circle in the auxiliary plane
C_r	circle of radius <i>r</i> > 1 in the auxiliary plane
\boldsymbol{c}_k	kth Laurent coefficient in the map
\boldsymbol{d}_k	k th Laurent coefficient in $ ilde{oldsymbol{\Phi}}^{(nc)}$
h	undeformed airfoil centroid
Н	deformed airfoil centroid
i	imaginary unit
k	non-dimensional Fourier variable (reduced frequency)
l	undeformed airfoil length
m_k	modulus of c_k
п	order of the map
Ν	number of shed vortices
n	outer normal vector on the airfoil boundary
р	pressure
\boldsymbol{p}_s	complex coefficient in u_{b_n}
P_{3n}	polynomial of degree $3n$ in ω
$\boldsymbol{q}_{r,j}$	complex coefficient in <i>u</i> _{bn}
Q_{2n}	polynomial of degree $2n$ in ω
r	radius of the circle C_r in the auxiliary plane
r_k	modulus of the k th singularity in $ ilde{m{\Phi}}^{(b)}$
S	arclength along the airfoil boundary
t	time
Δt	integration time step
Δt_g	vortex-shedding time step
T_m	period of oscillation of m_2
T_{ϕ}	period of oscillation of ϕ_2
u_{b_n}	component of u _b normal to the airfoil boundary
u_n	component of u normal to the airfoil boundary
u_{∞}	modulus of u_{∞}
u	flow velocity in the airfoil plane
\boldsymbol{u}_b	velocity of the airfoil boundary
u_{∞}	freestream velocity
V_n	component of H normal to the airfoil boundary $\tilde{z}(u)$
\boldsymbol{w}_k	kth additional singularity in $\Phi^{(0)}$
x	horizontal coordinate in the airfoil plane
x	position in the airfoil plane
\boldsymbol{x}_b	position on the airfoil boundary
\boldsymbol{x}_v	vortex position in the airfoil plane
y	vertical coordinate in the airfoil plane
\mathbf{Y}_k	kth critical point of the map in the fluid domain
Creek symbols	
GICCK SYI	
α	pitch angle
β	phase of $oldsymbol{u}_\infty$
Γ_b	body circulation
Γ_{ho}	initial body circulation

- Γ_{b_0} Γ_j γ_{jk} δ circulation of the *j*th vortex
- ratio $\Lambda_j / \overline{\mathbf{w}}_k$
- normalized distance of the nascent vortex from the airfoil trailing-edge

Download English Version:

https://daneshyari.com/en/article/7175765

Download Persian Version:

https://daneshyari.com/article/7175765

Daneshyari.com