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h i g h l i g h t s

• A semi-analytical model for the unsteady aerodynamics of a flexible thin airfoil is proposed.
• The model generalizes mapping functions and the complex potential to arbitrary motions.
• Free wake modeled using discrete vortices is also included.
• The aerodynamic pressure load on the airfoil is evaluated analytically in space.
• Results for an airfoil with curvature of constant sign along the chord are presented.
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a b s t r a c t

This paper presents a geometrically exact semi-analytical approach to model the unsteady
aerodynamics of a flexible thin airfoil in incompressible potential flow. The velocity field
is described by a complex potential, which is developed by mapping the airfoil boundary
onto a circle. Thismethodology, well established for small disturbances, is here generalized
to evaluate the aerodynamic load on an airfoil subject to prescribed arbitrary rigid-body
motion and deformation. The model also includes the effects of free wake, modeled by a
large number of discrete vortices. A general semi-analytical solution for the aerodynamic
pressure distribution is obtained, specialized to the case of curvature of constant sign
along the airfoil chord, and validated with reference linearized results. Next, the model
validity for large curvatures is discussed by comparing velocity fields around increasingly
deformed airfoils with numerical solutions from suitable panel methods. Finally, results
for a cantilevered flexible airfoil subject to prescribed deformation in a steady axial flow
are presented to point out different unsteady mechanisms influencing the aerodynamic
pressure distribution and responsible for its changes in time. This insight is peculiar of the
semi-analytical nature of the present formulation and cannot be easily obtained through
numerical handling of the problem. The paper ends by outlining future developments of
the present work toward the ultimate goal of studying coupled fluid–structure interaction
problems in presence of very large deformations.
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Nomenclature

Latin symbols

ak kth complex coefficient in Φ̃(v)

b half chord
BCk kth branch cut of the map in the fluid domain
BCPk preimage of BCk in the auxiliary plane
bk ratio ak/wk
∆Cp pressure jump coefficient
C unit circle in the auxiliary plane
Cr circle of radius r > 1 in the auxiliary plane
ck kth Laurent coefficient in the map
dk kth Laurent coefficient in Φ̃(nc)

h undeformed airfoil centroid
H deformed airfoil centroid
i imaginary unit
k non-dimensional Fourier variable (reduced frequency)
ℓ undeformed airfoil length
mk modulus of ck
n order of the map
N number of shed vortices
n outer normal vector on the airfoil boundary
p pressure
ps complex coefficient in ubn
P3n polynomial of degree 3n in ω
qr,j complex coefficient in ubn
Q2n polynomial of degree 2n in ω
r radius of the circle Cr in the auxiliary plane
rk modulus of the kth singularity in Φ̃(b)

s arclength along the airfoil boundary
t time
∆t integration time step
∆tg vortex-shedding time step
Tm period of oscillation ofm2
Tφ period of oscillation of φ2
ubn component of ub normal to the airfoil boundary
un component of u normal to the airfoil boundary
u∞ modulus of u∞

u flow velocity in the airfoil plane
ub velocity of the airfoil boundary
u∞ freestream velocity
Vn component of Ḣ normal to the airfoil boundary
wk kth additional singularity in Φ̃(v)

x horizontal coordinate in the airfoil plane
x position in the airfoil plane
xb position on the airfoil boundary
xv vortex position in the airfoil plane
y vertical coordinate in the airfoil plane
Yk kth critical point of the map in the fluid domain

Greek symbols

α pitch angle
β phase of u∞

Γb body circulation
Γb0 initial body circulation
Γj circulation of the jth vortex
γ jk ratio Λj/wk
δ normalized distance of the nascent vortex from the airfoil trailing-edge
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