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a b s t r a c t

This paper presents a numerical study of the free-surface evolution for inviscid, in-
compressible, irrotational, horizontally forced sloshing in a two-dimensional rectangular
vessel with an inhomogeneous bottom topography. The numerical scheme uses a time-
dependent conformal mapping to map the physical fluid domain to a rectangle in the
computational domain with a time-dependent aspect ratio Q(t), known as the conformal
modulus. The advantage of this approach over conventional potential flow solvers is the
solution automatically satisfies Laplace's equation for all time, hence only the integration
of the two free-surface boundary conditions is required. This makes the scheme compu-
tationally fast, and as grid points are required only along the free-surface, high resolution
simulations can be performed which allows for simulations for mean fluid depths close to
the shallow water water regime. The scheme is robust and can simulate both resonate and
non-resonate cases, where in the former, the large amplitude waves are well predicted.

Results of nonlinear simulations are presented in the case of non-breaking waves for
both an asymmetrical ‘step’ and a symmetric ‘hump’ bottom topography. The natural free-
sloshing mode frequencies are compared with the small topography asymptotic results of
Faltinsen and Timokha (2009) (Sloshing, Cambridge University Press (Cambridge)), and are
found to be lower than this asymptotic prediction for moderate and large topography
magnitudes. For forced periodic oscillations it is shown that the hump profile is the most
effective topography for minimizing the nonlinear response of the fluid, and hence this
topography would reduce the stresses on the vessel walls generated by the fluid. Results
also show that varying the width of the step or hump has a less significant effect than
varying its magnitude.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Being able to accurately predict the free-surface motion of a fluid in a vessel is of practical importance in physical
applications. The sloshing effects of a fluid in an externally forced vessel may cause detrimental consequences in many
engineering applications. For example, the sloshing of liquid fuel in the fuel tanks of spacecraft or rockets can affect their
trajectory or, if the sloshing frequency is close to the natural sloshing frequency of the fuel tank itself, then the high dynamic
pressures caused by the resonating fluid could damage the walls of the tank. For more information on aerospace applica-
tions see the works of Abramson (1966) and Gerrits (2001).

In general, a three-dimensional vessel, such as a ship floating on the ocean, has 6 degrees of freedom. It has 3 linear
translations heave, sway and surge and 3 rotational motions, pitch, roll and yaw. Understanding the response of the vessel,
and the fluid it contains, to each of these 6 different degrees of freedom is vital to fully understand the stability properties of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jfs

Journal of Fluids and Structures

http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.007
0889-9746/& 2016 Elsevier Ltd. All rights reserved.

Journal of Fluids and Structures 64 (2016) 1–26

www.sciencedirect.com/science/journal/08899746
www.elsevier.com/locate/jfs
http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.007
http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.007
http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2016.04.007&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfluidstructs.2016.04.007&domain=pdf
http://dx.doi.org/10.1016/j.jfluidstructs.2016.04.007


the coupled system (Faltinsen and Timokha, 2009). In the present work we simplify this general situation to consider only
1 linear translation degree of freedom and focus on understanding the free-surface evolution caused by horizontal vessel
motion only, such as in Tuned Liquid Dampers (TLDs).

Tuned Liquid Dampers are vessels which contain a fluid which are designed to suppress wind and earthquake oscilla-
tions in tall buildings (Kareem et al., 1999). A schematic of a TLD is given in Fig. 1. The designers of TLDs are responsible for
understanding the complicated dynamic coupled motion of the fluid-vessel interaction in order to determine the optimal
amount of fluid in the TLD to damp the most severe oscillations. Such an investigation would be costly via experiments
alone, hence having an effective numerical scheme which can simulate various forcing frequencies and vessel topologies is
beneficial.

Studying the sloshing motion in a stationary or forced vessel either experimentally, theoretically or numerically is very
complicated. The works of Moiseyev and Rumyantsev (1968), Ibrahim (2005) and Faltinsen and Timokha (2009), and the re-
ferences herein, highlight many of the problems observed in this area. The main theoretical and numerical difficulty is accurately
calculating the position of the free-surface, which is unknown of the problem. Previous studies of this problem have tended to
use one of two approaches for following the evolution of the free-surface. The first approach uses Lagrangian particle tracking of
the numerical nodes on the free-surface with regridding, but the disadvantage of this approach is that the surface velocities are
difficult to accurately calculate and so the surface has to be smoothed. The second approach uses mappings to map the physical
domain to a rectangular computational domain with the free-surface now aligned with one edge of the rectangle. This approach
requires no smoothing but it cannot easily predict flow features such as wetting and drying of the vessel bottom. However, for
most physical applications this is not a major restriction of the method. This mapping approach was successfully implemented by
Frandsen (2004) who used a s-transformation to map the liquid domain onto a fixed rectangular computational domain (Phillips,
1957) for two-dimensional, inviscid, incompressible, irrotational sloshing in a rectangular vessel with a flat bottom. In the
computational domain a transformed version of Laplace's equation was solved on a rectangular grid for the velocity potential ϕ,
with the appropriate boundary conditions on the vessel walls and the free-surface. Frandsen (2004) demonstrated that this
approach was successful for a flat bottomed rectangular vessel by verifying free-surface results against weakly nonlinear
asymptotic results. However, this s-transformation approach is limited in two ways: firstly, by solving the transformed version of
Laplace's equation directly in the interior of the domain, a two-dimensional numerical grid is required, thus restricting the
computational resolution of the method, and secondly, the given s-transformation does not extend easily to vessels with in-
homogeneous bottom topographies. The numerical approach used in this paper overcomes both these shortfalls and thus is
significant to research in this area.

The numerical scheme used in this paper uses a time-dependent conformal mapping to map the physical domain to a
rectangular computational domain with time-dependent aspect ratio, Q(t), known as the conformal modulus. As the
mapping is conformal the coordinates in the physical domain μ ν μ ν( ) + ( )x t y t, , i , , and the complex potential
ϕ μ ν ψ μ ν( ) + ( )t t, , i , , are time-dependent holomorphic functions of the computational domain coordinates μ ν( ), , so they
satisfy the Cauchy–Riemann equations

ϕ ψ ϕ ψ= − = = − = ( )ν μ μ ν ν μ μ νx y x y, , , , 1.1

and hence they all satisfy Laplace's equation

ϕ ϕ ψ ψ+ = + = + = + = ( )μμ νν μμ νν μμ νν μμ ννx x y y0, 0, 0, 0, 1.2

in the computational domain. Here ψ is the corresponding streamfunction to the velocity potential ϕ. Because of (1.1) and
(1.2) we can construct a numerical scheme such that we calculate only the evolution of the two harmonic functions y and ϕ
on the free-surface, and use integral transforms to relate these functions to the conjugate harmonic functions x and ψ along
the free-surface (Turner and Bridges, 2015; Dyachenko et al., 1996, 1999; Choi and Camassa, 1999). When the fluid depth in
the vessel is infinite, the integral transforms are just the Hilbert transform (Dyachenko et al., 1996; Papamichael and Sty-
lianopoulos, 2010), but for finite depth fluids the transforms are given by the Hilbert–Garrick transform and depend upon
the conformal modulus Q(t) making the transforms time dependent (Turner and Bridges, 2015). The importance of
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Fig. 1. A schematic illustration of a Tuned Liquid Damper (TLD).
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