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a b s t r a c t

A self-propelled flexible flapping wing 2D numerical model undergoing a combined
pitching and heaving motion is presented. Since such freely moving foil experiences zero
net thrust, a definition of efficiency for this kind of problem is proposed and discussed
against other formulations found in the literature. It is also shown that the deviation
motion of wings such as that found in natural flyers is likely a consequence of the fluid–
structure dynamics of the wings. The passive deviation motion observed in numerical
simulations is either a consequence of a feathering mechanism referred to as rigid
feathering or of the inertial displacement caused by the wing deformation. The effects of
flexibility on the performance of the wing are also presented. It is found that flexibility
may significantly enhance the efficiency in pressure-driven deformation cases. The rigid
feathering mechanism is found to have an effect similar to that of the feathering caused by
wing flexibility on the performances of pressure-driven deformation cases.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

While most studies of oscillating wing are performed in an imposed upstream flow, the motion of flying animals or man-
made flying devices is not constrained; it is a consequence of the propulsive force. In the case of flapping wings, the
resulting velocity is most likely to fluctuate since the propulsive mechanism is unsteady. This remains true unless the mass
of the body on which the wings are attached, is much larger than the wing themselves. Recently, the study of self-propelled
flapping wings seems to have gained prevalence over “clamped” flapping wings (Zhang et al., 2009, 2010; Spagnolie et al.,
2010; Thiria and Godoy-Diana, 2010; Ramananarivo et al., 2011; Alben et al., 2012; Hua et al., 2013; Lee and Lee, 2013; Yeh
and Alexeev, 2014; Zhu et al., 2014a, 2014b).

Letting the wing free to move in the direction transverse to the strokes inherently introduces some passive mechanisms
on the wing. Yet, passive mechanisms are known to be used by flying and swimming animals to minimize their energy
consumption. For example, some insects, such as dragonflies, benefit from fluid torque to achieve effortless wing rotation
during the pronation (see Wang, 2005). As another example, fishes that swim upstream behind an obstacle not only do
benefit from a low velocity wake region that reduces the effort needed to stay put, but actually experience thrust. Indeed,
Beal et al. (2006) demonstrated that even a dead fish can experience thrust when its body resonates with the vortices in the
wake of a bluff body. Further experiments showed that it is also possible to apply this principle to a high-aspect-ratio foil
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behind a long D-cylinder. A similar study was also performed by Eldredge and Pisani (2008) using a viscous vortex particles
method to model three rigid bodies connected with hinges. It was found, surprisingly, that the mechanism works equally
well on multi-elements rigid bodies whether the hinges are linked with torsional springs or locked.

Using the same numerical method, Wilson and Eldredge (2011) studied the physics of bodies. These bodies were either
actively or passively controlled. In the case of passively controlled bodies, the motion was specified on certain hinges while
the other hinges were linked with torsional springs. On the other hand, actively controlled bodies used prescribed kine-
matics on all hinges. It was found that some configurations with passively controlled bodies provide optimal swimming
speed and efficiency.

On a more fundamental perspective, von Ellenrieder et al. (2008) suggested that the choice of wing frequency in
swimming and flying animals may be the result of a limit cycle process. That is, the flapping wing dynamics of such species
would rely significantly on passive mechanisms. In that context, a device that propels itself using a specific flapping wing
configuration (geometry and kinematics) without active control should be designed so that it naturally reaches a limit cycle
that corresponds to an optimal regime.

In this paper, mass and chordwise flexibility effects on self-propelled 2D flapping wings performances are investigated
with respect to a formal dimensionless parametric space previously introduced (Olivier and Dumas, 2016). The imposed
kinematics consists of a combined pitching and heaving motion while the wing is let free to move in the horizontal di-
rection. The imposed pitching motion forces the wing to travel in a specific direction (a zero pitching amplitude can produce
a hysteretic regime involving either forward or backward motion, see Zhang et al. (2009, 2010) and Spagnolie et al. (2010)).
In cases of strong fluid–structure interactions (i.e., light wings with respect to fluid), it will be shown that two feathering
mechanisms act simultaneously and strongly affect the dynamics of the wing and of the flow. On the other hand, whenweak
fluid–structure interactions occur (i.e., heavy wings with respect to fluid), the rigid wing acts mostly as if it was moving at
constant velocity in the x-direction while the flexible ones exhibit a small deviation motion. Moreover, while self-propelled
wings reach a terminal average velocity from which a reduced frequency can be computed, the circumstances under which
the optimal reduced frequency of the corresponding constrained scenario is reached will be discussed. Section 2 introduces
the proposed flexible flapping wing problem definition and the corresponding performance metrics. Section 3 presents the
mathematical model that describes the incompressible flow and the elastic wing section as well as the numerical methods
used to solve the fluid–structure coupled problem. Section 4 presents numerical verifications and discusses the validity of
the numerical method. Finally, Section 5 reports the results and discussions of 2D self-propelled rigid and flexible flapping
wings.

Nomenclature

c relative convective velocity
c chord length
CP power coefficient
Cp pressure coefficient
CT thrust coefficient
( )d d,x y displacement vector field
E Young modulus
e wing thickness
ẽ Green–Lagrange strain

′F force vector per unit span
f frequency

⁎f reduced frequency
h heaving displacement

⁎h normalized heaving amplitude
h0 heaving amplitude
′I beam cross-section area moment of inertia per

unit span
′M internal bending moment in a beam per unit

span, moment per unit span
′N internal normal force in a beam per unit span

n̂ unit surface normal vector
P power
p pressure field

Re Reynolds number
S surface
St Strouhal number
T thrust force
t time
Un normalized velocity
V volume
v velocity vector field
v̂ control surface velocity
α angle of attack
αEff effective angle of attack
χ̃ curvature of the deformed beam
δ⁎

P normalized flexibility
η efficiency
μ dynamic viscosity
ν kinematic viscosity
ω vorticity field (z-component)
ϕ̃ phase shift
ρ density
Σ pressure-to-inertia ratio
τ shear load
θ pitching angle
θ0 pitching amplitude
θEff effective pitching angle
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