ARTICLE IN PRESS

Journal of Fluids and Structures **I** (**IIII**) **III**-**III**

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Effects of deformation on lift and power efficiency in a hovering motion of a chord-wise flexible wing

Dewei Qi^{a,*}, Raymond Gordnier^b

^a Department of Chemical and Paper Engineering, Western Michigan University, Kalamazoo, MI 49008, USA ^b AFRL/RBAC, 2210 Eighth St, Bldg 146, Rm 225, Wright-Patterson AFB, OH 45433-7512, USA

ARTICLE INFO

Article history: Received 24 August 2013 Accepted 2 November 2014

Keywords: Insect flight Chord-wise flexible wing Lift Drag Leading edge vortices

ABSTRACT

To understand the effects of flexibility on aerodynamic force, the lattice Boltzmann flexible particle method (LBFPM) is employed to simulate deformation and its relationship with inertial and elastic forces in a flapping motion of a chord-wise flexible wing in a three-dimensional space at a hovering Reynolds number of Re = 136. The rigidity *EI* and effective inertia Π_0 are systematically varied, and lift, drag, deformation and power efficiency are computed and compared. It is found that both the rotational and translational inertia contribute to the deflection limited by flexural rigidity and result in a large angular and translation velocities, which generate a large intensity of vorticity and benefit lift and power efficiency. It is revealed that a "mirrored S" or "S" shaped deflection due to the rotational inertia plays a more positive role than the deflection caused by the translational inertia.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Some natural fliers, such as insects and birds, may fly with flexible wings flapping due to the lack of wheels in nature, while most modern aircrafts use either fixed or rotational wings. It is well known that the forces on flexible wings are determined not only by wing-flapping kinematics, but also by the motion of the surrounding fluid. Interactions between deformation and unsteady fluid flow may alter the fluid field and change hydrodynamic forces on the wings. Therefore, it is important to understand the sophisticated interacting relationships between the deformation and the structure of fluid response.

The deformation is determined not only by the forces exacted on the wing, but also by its elastic properties. The values of elastic flexural rigidity in span-wise or chord-wise directions depend on wing materials and structure, such as vein arrangement, folding lines, and flexion lines. In general, flying vertebrates, such as birds and bats, can actively control the degree of wing bending and twisting by using muscular contraction or expansion and by bone movement. However, insects can use only their base to actively drive wing flapping and transmit the motion outward to wing tips. They cannot actively control their deformation due to the lack of muscles over the wing chord and span since muscles are limited to the wing base area. The insects mainly experience passive deformation, bending or twisting, responding to aerodynamic forces, inertial motion of the wings, and asymmetrical flexural rigidity in chord and span directions. Deformations, including span

http://dx.doi.org/10.1016/j.jfluidstructs.2014.11.004 0889-9746/© 2014 Elsevier Ltd. All rights reserved.

^{*} Corresponding author.

2

ARTICLE IN PRESS

D. Qi, R. Gordnier / Journal of Fluids and Structures I (IIII) III-III

Nomenlature		\overrightarrow{x}_b	position vector of the solid boundary node
		\overrightarrow{x}	position vector of the fluid boundary node
κ	reduced frequency	\vec{F}_h	hydrodynamic force
Re	Reynolds number	\overline{F}_{h}	total hydrodynamic force on solid particle <i>i</i>
р	pressure	$\overline{T}_{i\perp}^{\prime\prime}$	total hydrodynamic torque on solid particle <i>i</i>
Ĵ	flapping frequency	\vec{C}_i	vector from the mass center of the segment <i>i</i>
ω	flapping angular velocity		to the joint
U_0	reference velocity	\vec{c}_i^+	semi-axis vector of the wing segment in the
ν	kinematic viscosity		body-fixed coordinate system
Н	amplitude of the plunge	Ν	number of the segment
1	coordinate variable along the chord direction	<i>a</i> ₃	length of the semi-axis of the wing segment
Π_0	effective inertia		along the chord
ρ_s	wing density	Θ_i	bending angle between the <i>i</i> th and $(i+1)$ th
$\rho_{\rm f}$	fluid density		segment
h	wing thickness	\vec{F}_{ih}	total force on segment <i>i</i>
EI_l	bending flexural rigidity	É i	total hydrodynamic force on segment <i>i</i>
Ε	Young's modulus	Ι	inertial moment
I_l	second moment of area	Μ	mass of segment
С	chord length	Ġ _{ti}	total constraint force on the <i>i</i> th segment
S	span length	$\overrightarrow{T}_{ti}^{\nu}$	total bending torque
F_f	non-dimensional hydrodynamic force per unit	$\overrightarrow{T}_{i}^{G}$	total torque due to the constraint force
	chord length	\vec{G}_i^{-u}	constraint force on joint <i>i</i>
$f_{\sigma}(\vec{x},t)$	fluid particle distribution function	ω_0	nature frequency
\vec{e}_{σ}	particles discrete velocity	ω^*	normalized frequency
$f^{eq}_{\sigma}(\vec{x},t)$	equilibrium distribution function	C_l	lift coefficient
δt	length of time step	F_y	total hydrodynamic force in the Y-direction
τ	single relaxation time	C_d	drag coefficient
σ	direction number of the particle discrete	F_z	total hydrodynamic force in the Z-direction
_	velocity	P	power input coefficient
ú	fluid velocity	Ĵ₽ Q	power efficiency
ω_{σ}	weight coefficient	θ	pitch angle
ϵ	Knudsen number	α_0	initial pitch angle
t_0	short time scale	α_1	amplitude of pitch motion
t_1	long time scale	α_2	phase angle
$\frac{t}{2}$	time after fluid particle collision	O_z	pitch angular velocity
Ω	angular velocity of the solid segment	0r	
Ú́ b	boundary velocity of the solid segment	θ_L	leading edge angle
Ú _с	velocity of the mass center of solid segment	θ_T	training edge angle
Ŕ _i	position vector of the mass center of solid	$\Delta \theta_L$	reading edge deflection angle
	segment i	$\Delta \theta_B$	training edge deflection angle

deflection and chord camber due to flexion lines, have been observed (Wootton, 1981, 1990), in particular, at stroke reversal points where acceleration and deceleration occur.

To understand how the wing deforms due to flapping, Heathcote et al. (2004) conducted experiments to investigate the flexibility of a wing in chordwise (Heathcote and Gursul, 2007) and spanwise (Heathcote et al., 2008) directions on the thrust, lift, and power efficiency. They found that at high plunge frequencies the thrust coefficient of the airfoil with intermediate stiffness was greatest. Recently, Chimakurthi et al. (2009) presented a computational aero-elasticity frame-work for analyzing a flapping wing in a three-dimensional space. Their computational results for flexibility in the spanwise direction of a wing plunging were consistent with the experimental results of Heathcote (Shyy et al., 1999, 2010). The simulations of Visbal et al. (2009) and Gordnier et al. (2010) have shown that flexibility may delay stall and enhance thrust forces. Many other authors have closely related natural resonance to flight performance. Masoud and Alexeev (2010) showed that at the ratio of the flapping to natural frequency of 0.95 the maximal propulsive force was obtained. Spagnolie et al. (2010) had forward velocity peaks when the flapping frequency is near the resonance frequency. Michelin and Llewellyn Smith (2009), Thiria and Godoy-Diana (2010), Gogulapati and Friedmann (2011), and Wu et al. (2010) have had a similar conclusion. This is that when flapping frequency is close to the natural frequency, the resonance phenomenon induces a large lift or propulsive force and maximizes the efficiency.

However, Sunada et al. (1998) measured the natural frequency and the wing-beating frequency of four different dragonflies. They found that the wing-beat frequency ratios were in the range 0.3–0.46 while Chen et al.'s (2008)

Please cite this article as: Qi, D., Gordnier, R., Effects of deformation on lift and power efficiency in a hovering motion of a chord-wise flexible wing. Journal of Fluids and Structures (2014), http://dx.doi.org/10.1016/j.jfluidstructs.2014.11.004

Download English Version:

https://daneshyari.com/en/article/7175962

Download Persian Version:

https://daneshyari.com/article/7175962

Daneshyari.com