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a b s t r a c t

We investigate the interaction between a viscoelastic Oldroyd-B fluid and an elastic
structure via simulations applying an implicit partitioned coupling algorithm. Simulations
are done for a flow through a channel with a flexible wall and a lid-driven cavity flow with
flexible bottom. In addition, we make use of a mass–spring–dashpot prototype model to
study the dynamic interaction problem. Both the simulation results and the analysis of the
prototype model show that there are obvious differences in the fluid–structure interaction
if the fluids are viscoelastic instead of purely viscous. These differences appear in the
deformation of the solid at stationary state and in the equilibrium position, amplitude,
frequency as well as phase shift of the oscillation. Moreover, we investigate the influence
of numerical and physical parameters on the implicit partitioned coupling algorithm for
simulation of viscoelastic fluid–structure interaction problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fluid–structure interaction (FSI) is frequently encountered in many applications, in particular, in biomedical research.
A well-known example is the blood flow in arteries or veins, where information generated by investigation of blood
vessel–wall interaction is useful for medical evaluation. Another example concerns micro-organisms like bacteria, algae or
sperm swimming in body fluids. Here, understanding the propulsion mechanisms opens an avenue for the control of
biological systems and the design of artificial micro-machines, e.g. micro-valves, micro-pumps or micro-robots which are
employed to carry out local and small-scale micro-operations. For such micro-devices FSI also plays an important role. For
instance, in a valveless membrane micro-pump, the vibrating membrane drives the fluid flow, meanwhile, the fluid strongly
influences the resistance to this vibration.

In the FSI problems mentioned, fluids usually have non-Newtonian fluid properties. In particular, viscoelastic behaviour
often occurs, i.e. the fluids exhibit both viscous and elastic characteristics under typical flow conditions. For such viscoelastic
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fluid–structure interaction (VFSI) problems the effect of viscoelasticity may play a crucial role when it is comparable to or
even dominates inertia effects. For instance, due to this fact the swimming of micro-organisms requires swimming
strategies different from those in the macroscopic world.

Studying FSI problems in biomedical research via experiments is difficult and costly. Therefore, the research is
increasingly aided through numerical modeling. Techniques for numerical modeling of FSI with Newtonian fluids have
been developed for decades. They serve well as a guide in industrial and scientific applications. FSI with generalized
Newtonian fluids, such as fluids with shear-dependent viscosity has been studied via numerical modeling for several years.
Representative works are, e.g., Lukác̆ová-Medvid’ová and Zaus ̆ková (2008) and Lukác̆ová-Medvid’ová et al. (2013). The extra
stress tensor τ of generalized Newtonian fluids has the form τ ¼ 2ηð _γ ÞD, where D is the rate of deformation tensor and
_γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2D:D

p
is the shear rate. One can model different shear dependent non-Newtonian behaviours, such as shear-thinning,

shear-thickening, by using different functional forms of ηð _γ Þ. A commonly used model for viscosity is given by the power law
ηð _γ Þ ¼ K _γn�1, where K is the consistency factor and n is the power law index. Viscoelastic fluids have memory, i.e. the extra
stresses depend not only on the current motion of fluid but also on the history of the motion. To model these fluids, more
complex time-dependent constitutive models, e.g. Oldroyd-B, FENE-P, Giesekus, etc., must be employed. So far, not much
work concerns FSI with viscoelastic fluids. As far as we know, two relevant works are done by Chakraborty et al. (2010,
2012). In both papers the simulations are carried out for fluid flowing in a two-dimensional deformable channel. The
stationary deformation of the solid wall for different fluid relaxation times is investigated, but no transient behaviour of the
VFSI system is studied.

It is addressed by Chakraborty et al. (2010) that one of the difficulties in simulation of VFSI is the stability problem, the
so-called High Weissenberg Number Problem (HWNP), in simulation of viscoelastic fluid flow. When the HWNP occurs,
computation does not converge if the Weissenberg number, which describes the ratio of elastic force to viscous force,
exceeds certain critical values. The HWNP is one of the factors that hinder the progress in the research of VFSI. However, in
recent years, several techniques to cope with the HWNP have been developed and successfully applied for simulation of
viscoelastic fluid flows at Weissenberg numbers of practical interest. The log-conformation representation (LCR) proposed
by Fattal and Kupferman (2004) is one of the successful methods among the others. It is interesting to see the effect of LCR
on coping with the HWNP in VFSI and to know whether we can gain deeper insight into the VFSI problem and investigate
the different behaviours between VFSI and Newtonian FSI (NFSI).

For simulation of FSI problems, a partitioned coupling algorithm is attractive, because it is flexible to adapt modern techniques in
the fluid and/or structural solver. Thus, such an approach simplifies the work to integrate the techniques for HWNP into the FSI
simulation. In this context the influence of numerical as well as physical parameters on the coupling algorithm is an important
issue, which has not been systematically investigated so far for VFSI problems. A convenient way to analyse the convergence
properties of a partitioned coupling algorithm is to apply the mass–spring–dashpot model proposed by Joosten et al. (2009). It is
possible to extend this model to analyse the properties of the coupling algorithm for VFSI. Also it is possible to apply the extended
prototype model to study the dynamic behaviours of a VFSI system and compare it to the simulations.

Based on the above discussion there are several questions still opening within the VFSI problems: How is the transient
behaviour of a VFSI system? How is the effect of approaches coping with HWNP on simulation of VFSI problems? How is the
convergence property of the partitioned coupling algorithm for VFSI? What can we learn in applying the mass–spring–
dashpot model to analyse the dynamic behaviour of a VFSI system and the property of the coupling algorithm for VFSI? With
the present work we will contribute to answers to those questions.

The rest of the paper is organised as follows. In Section 2 we present the governing equations of an incompressible
Oldroyd-B fluid flow in a moving domain and the balance of an elastic structure. The log-conformation representation for
solving the constitutive equations is described there. The numerical methods used for simulation of viscoelastic fluids and
the implicit partitioned coupling algorithm for VFSI is outlined in Section 3. In Section 4 we first review the mass–spring–
dashpot model proposed by Joosten et al. (2009) then extent it for a VFSI system and analyse the solutions of this prototype
model. In Section 5 the simulation results of test cases “two-dimensional flow through a channel with a flexible wall” and
“three-dimensional lid-driven cavity flow with flexible bottom” are discussed. Finally, conclusions are given in Section 6.

2. Governing equations

The general FSI problem consists of a fluid domain Ωf and a structural domain Ωs. They share a common interface Γi.
Initially the two domains occupy Ωf

0 and Ωs
0 and the interface is located at Γi

0 at time t¼0 (see Fig. 1(a)). Due to the
interaction between fluid and structure, the position of the interface changes to ΓiðtÞ at time t. The fluid and structure
domains then deform and change to Ωf ðtÞ and ΩsðtÞ, respectively (see Fig. 1(b)).

In case of an incompressible Oldroyd-B fluid interacting with an elastic solid, the velocity u, the pressure p as well as the
extra stress τ (or the conformation tensor c if the conformation formulation is employed) are chosen for the unknowns in
the fluid phase, whereas the displacement d is the unknown on the structural side.

2.1. Fluid domain

The fluid domain Ωf varies in time due to the moving interface Γi. A possibility to account for the moving domain is to
formulate the problem in the Arbitrary-Lagrangian–Eulerian (ALE) description, cf. Hirt et al. (1974). In the ALE description,
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