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a b s t r a c t

Suspending a rectangular vessel partially filled with an inviscid fluid from a single rigid
pivoting rod produces an interesting physical model for investigating the dynamic
coupling between the fluid and vessel motion. The fluid motion is governed by the Euler
equations relative to the moving frame of the vessel, and the vessel motion is given by a
modified forced pendulum equation. The fully nonlinear, two-dimensional, equations of
motion are derived and linearised for small-amplitude vessel and free-surface motions,
and the natural frequencies of the system analysed. It is found that the linear problem
exhibits an unstable solution if the rod length is shorter than a critical length which
depends on the length of the vessel, the fluid height and the ratio of the fluid and vessel
masses. In addition, we identify the existence of 1:1 resonances in the system where the
symmetric sloshing modes oscillate with the same frequency as the coupled fluid/vessel
motion. The implications of instability and resonance on the nonlinear problem are also
briefly discussed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The movement of a vessel partially filled with a fluid can cause the fluid motion to undergo extremely complex motions.
Moreover, the fluid motion, comprising waves sloshing back and forth along the fluid free-surface, produces forces and
moments on the vessel, which if the vessel is free to move, can cause unintended vessel motion which could be stabilizing or
destabilizing. A simple example of such unintended motion can be found in the article ‘walking with coffee’which examines
the spilling of coffee while walking (Mayer and Krechetnikov, 2012). A more dramatic example of a destabilizing fluid
motion is the dynamics of trapped seawater on the deck of Alaskan king crab boats. They have been observed to capsize
when the trapped water sloshes backwards and forwards creating unintended moments enhancing the roll motion of the
boat (Dillingham, 1981; Caglayan and Storch, 1982; Adee and Caglayan, 1982). Therefore, the ability to identify destabilizing
motions in coupled fluid–vessel interactions is of great practical importance. Examples where this coupling is important are
terrestrial and maritime fluid transportation, space transport, fuel tanks under earthquake excitement and industrial
applications such as tuned liquid dampers (TLDs) (Ikeda and Nakagawa, 1997; Frandsen, 2005).

Studying the motion of a fluid in a stationary or forced vessel is already very complicated both experimentally and
theoretically. The works by Moiseyev and Rumyantsev (1968), Ibrahim (2005) and Faltinsen and Timokha (2009), and the
references herein, highlight the problems in these areas. The problem of coupled dynamics adds an additional layer of
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complexity to this problem because it allows for the potential enhancement or destabilisation of fluid dynamics due to the
motion of the vessel.

The configuration of interest in this paper is shown in Fig. 1. The vessel, with rectangular cross section of length L and
height d, is suspended by a rigid rod of length bl which is attached to the top of the vessel and is free to rotate in the vertical
plane such that the rod makes an angle θ with the downward vertical. The values of bl and d are only important in the
combination l¼blþd, which is the perpendicular distance from the pivot point to the base of the vessel. The vessel is
partially filled with an inviscid, incompressible, constant density fluid of mass mf and density ρ. When the vessel is in
motion the free surface of the fluid is given by y¼ hðx; tÞ, with mean depth h0, where x¼ ðx; yÞ is a coordinate system fixed to
the moving vessel. The base of the vessel is at y¼0. We also define bX ¼ ðbX ; bY Þ to be a planar fixed coordinate system with
origin at the point at which the vessel pivots. The fluid mass mf ¼

R L
0 ρhðx; tÞ dx is independent of time. This pivoting TLD

setup is of interest to engineers, because it is a good mechanism for suppressing torsional vibrations on bridges caused by
aerodynamic effects (Xue et al., 2000; Chen et al., 2008), which are a danger to high sided vehicles (Chen and Cai, 2004).
These studies include experiments as well as linear and nonlinear simulations, where the shallow water model is assumed
for the fluid motion.

This configuration is the simplest coupling between fluid and vessel motion that allows rotation. The TLD configuration is
simpler but only allows for translation of the vessel. This pendulum-slosh model was one of the first coupled models to be
studied (Moiseev, 1953; Abramson et al., 1961; Moiseyev and Rumyantsev, 1968). Indeed, the linear equations of motion
were first derived in Moiseyev and Rumyantsev (1968) by considering the added mass coefficients for the fluid and a
Lagrangian construction for the two-dimensional vessel equation. They then went on to derive the characteristic relation for
linear perturbations in terms of a general vessel geometry. In this paper we present three new results for this linear coupled
problem: firstly, we give a new independent derivation of the governing equations and characteristic equation for the
natural frequencies, confirming the result in Moiseyev and Rumyantsev (1968); secondly, we have discovered a new
instability of this coupled system; and thirdly, we have discovered a 1:1 resonance in the system.

The instability range is surprising because it always occurs with the pivot point above the centre of mass of the quiescent
fluid. If the fluid was a rigid body of length L and height h0 and the pivot point was on the vertical centreline, the
configuration would be unstable if and only if the pivot point was below the centroid:

lo1
2
h0:

By replacing the rigid body with a fluid in the interior, the instability can arise with the pivot point above the point y¼ 1
2 h0.

We have discovered the remarkable and exact formula:

1þRð Þlo1
2
h0þ

1
12

L2

h0
; ð1:1Þ

for the instability threshold, where

R¼mv

mf
; ð1:2Þ

and mv is the mass of the dry vessel. For example the instability threshold can be even greater than h0 (above the still water
level), depending on the values of R, h0 and L. The depth ratio h0=L of the fluid plays a key role. The effect of this instability
on mechanical structures, such as the TLD for torsional bridge oscillations, would be catastrophic, leading to large unstable
oscillations, which could ultimately cause structural damage.

This configuration is to contrasted with Cooker's experiment (Cooker, 1994), which is also pendular, but with
two suspension points so the base of the vessel always remains horizontal. In this configuration the trivial solution is
never unstable. It has however many other features of interest. It has been studied experimentally by Cooker (1994) and
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Fig. 1. Pendulum vessel experiment under consideration.
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