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a b s t r a c t

For a wing-like plate in supersonic flow cantilevered at its root, chaotic motions are
studied in this paper. Prior literature has mainly focused on a simply supported plate or
the limit cycle oscillations (LCOs) of a cantilever plate. The governing equations are
constructed using von Karman plate theory and first-order piston theory. The Rayleigh–
Ritz approach is adopted to discretize (and reduce the order of) the partial differential
equations of the plate, and the resulting ordinary differential equations (ODEs) are solved
numerically by the fourth-order Runge–Kutta (RK4) method. Numerical simulations
demonstrate that the evolution of chaos is very complex, and the route to chaos depends
on the panel's length-to-width ratio a=b. For a=b¼ 1, a period-doubling of periodic motion
occurs before transition to chaos. Another route to chaos is via quasi-periodic response
directly for a=b¼ 2. The most complicated prechaos and postchaos pattern is for a=b¼ 0:5,
which shows the presence of chaos regions with periodicity windows. Additionally,
bifurcation diagrams show that certain features of the aeroelastic system such as quasi-
periodic motions may be missed with too few Rayleigh–Ritz modes. Time histories, phase
plane portraits, Poincaré maps and frequency spectra are used for identifying periodic and
chaotic motions.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Supersonic panel flutter has been investigated by many researchers. Most of them, however, focus on a clamped or
simply supported plate undergoing supersonic flow. For this model, Dowell (1966, 1967) first applied the Galerkin method
to study the nonlinear oscillations of a fluttering plate in two and three dimensions, and a stability region defined by the
in-plane compressive load and the aerodynamic force was obtained to describe the complicated nonlinear dynamic
phenomena. More recently, Epureanu et al. (2004a) explored the dynamics of aeroelastic panels using a finite difference
method, a Galerkin approach and a proper orthogonal decomposition (POD) method, in which multiple LCO co-existence
and chaotic oscillations were observed. The intrinsic sensitivity of the chaos was applied to detect parametric variations in
Epureanu et al. (2004b). Zhou et al. (2012) applied the Galerkin approach to analyze the aeroelastic stability of heated panel
with aerodynamic loading on both surfaces. For a three-dimensional plate, a reduced-order model (ROM) based on the POD
method along with Galerkin projection has been constructed by Xie et al. (2014a) to solve the nonlinear oscillations, and the
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computational cost was significantly reduced, especially for panels with large length-to-width ratios. In Xie et al. (2014a), it
was shown that chaotic response is crucial for constructing ROM, which is a primary motivation for the present work.

For chaotic oscillations, Dowell (1982) observed the chaotic self-excited oscillations in a simply supported fluttering
buckled plate system. Li and Yang (2014) studied the stability and chaos of a cantilever plate subjected to subsonic flow.
Thus, chaos for a simply supported plate in supersonic flow (Epureanu et al., 2004a; Dowell, 1982) and a cantilever plate
in subsonic flow (Li and Yang, 2014) has been observed. However, whether or not it occurs for the cantilever plate in
supersonic flow has not been determined previously. In the present study, we will show that the complex motions do arise
for the cantilever plate subjected to supersonic flow.

A transition from periodic to chaotic motions may occur through parameter changes (Moon, 1987). One should try to vary
one or more of the control parameters in the system to observe the evolution for chaotic oscillations. Dynamic pressure λ
will be the primary control parameter in this paper. A bifurcation diagram for observing the prechaotic or postchaotic
behaviors is mapped out via sweeping the parameter λ, and plotting local amplitude extrema of transverse deflection. The
boundary between periodic and chaotic motions can be seen directly in the bifurcation diagrams.

In this study, time histories, phase portraits, Poincaré maps and frequency spectra are the main descriptors to observe the
evolution of chaos. In a Poincaré map, a set of finite K fixed points indicates a K-period motion; a quasi-period motion where
two or more incommensurate periodic motions are present is shown as a closed curve; and a cloud of discrete points
implies a chaotic motion. Essentially, a Poincaré map provides a means to visualize the strange attractor when the motion is
chaotic. Frequency spectra via Fast Fourier Transform (FFT) of time response is one of the quantitative measures. When the
motion is periodic or quasi-periodic, frequency spectra show a single or a set of narrow spikes. On the other hand, a
continuous and broadband spectrum is a crucial clue of possible chaotic motions. Readers are referred to Moon (1987) for
more details.

In this paper, evolution of chaos for a cantilever plate in supersonic flow is explored, as an extension work to Ye and
Dowell (1991) and Hopkins (1994). The structure of this paper is organized as follows. Section 2 applies the classical
Rayleigh–Ritz method to solve the aeroelastic equations. In Section 3.1.1, a convergence study is performed based on
bifurcation diagrams that give careful suggestions on mode truncation. Meanwhile, a route to chaos for panel with length-
to-width ratio a=b¼ 1 is presented. Section 3.1.2 proves the symmetry of the aeroelastic system mathematically, and duality
of responses is observed from numerical examples. Evolution of chaos for panels of a=b¼ 0:5 and a=b¼ 2 is studied, and
distinct routes to chaos are obtained in Sections 3.2 and 3.3, respectively. Deflection shapes of LCO and chaos for different
panels are investigated in Section 3.4. Finally, the main conclusions are drawn in Section 4.

2. Theoretical analysis

In this section, the Rayleigh–Ritz method is employed to explore the nonlinear dynamics of the cantilever plate shown in
Fig. 1. The model studied here is a two-dimensional plate constrained along the root edge with supersonic flow over the

Nomenclature

a, b plate length, plate width
aij; brs mode coordinate for inplane displacement u; v
D, E plate stiffness, Young's modulus
h plate thickness
I, J total mode number retained in the x; y

directions for inplane displacement u
i, j mode number in the x; y directions for inplane

displacement u
L¼ T�U Lagrangian
Ma Mach number
M, N total mode number retained in the x; y

directions for transverse deflection
m, n mode number in the x; y directions for

transverse deflection
Δp aerodynamic pressure, positive in direction

opposite to w
Q generalized aerodynamic force
q dynamic pressure, ρ1V2

1=2
qmn mode coordinate for transverse deflection
R, S total mode number retained in the x; y

directions for inplane displacement v

r, s mode number in the x; y directions for inplane
displacement v

T kinetic energy
t time
U total elastic energy
u, v in-plane displacement in length and width
uiðrÞ; vjðsÞ mode in the x; y directions for in-plane

displacement u(v)
V1 flow velocity
w panel transverse deflection
x, y, z streamwise, spanwise, normal coordinates
β ðMa2�1Þ1=2, compressibility correction factor
λ 2qa3=βD, nondimensional dynamic pressure
μ ρa=ρmh, nondimensional fluid/structure

mass ratio
ν the Poisson ratio
ξ; η x=a; y=b
ρ; ρm air density, plate density
τ tðD=ρmha4Þ1=2, nondimensional time
ϕm;ψn mode in the x; y directions for transverse

deflection w
ð Þ0; _ð Þ dð Þ=dξ or dð Þ=dη, dð Þ=dτ
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