ARTICLE IN PRESS

Journal of Fluids and Structures **I** (**IIII**) **III**-**III**

Contents lists available at ScienceDirect

Journal of Fluids and Structures

journal homepage: www.elsevier.com/locate/jfs

Influence of cavitation on the hydroelastic stability of hydrofoils

Deniz Tolga Akcabay, Yin Lu Young*

Naval Architecture and Marine Engineering, University of Michigan, Ann Arbor, MI 48109-2145, USA

ARTICLE INFO

Article history: Received 26 July 2013 Accepted 21 April 2014

Keywords: Cavitation Hydrofoil Hydroelasticity Flexible Vibration Divergence

ABSTRACT

This work numerically examines the effect of turbulent and cavitating flow on the hydroelastic response and stability of a hydrofoil. A cantilevered, rectangular, chordwise rigid hydrofoil is modeled as a 2-degrees-of-freedom structure for its spanwise bending and torsional flexibilities. The fluid flow is modeled with the incompressible, Unsteady Reynolds Averaged Navier-Stokes equations using an eddy-viscosity turbulence closure model that is corrected for the presence of cavitation, and with a transport equation based cavitation model. The results show that, in general, massive cavitation tends to: (i) reduce the mean lift, (ii) increase the mean drag, (iii) lower the mean deformations, and (iv) delay static divergence, while unsteady sheet/cloud cavitation promotes flow induced vibrations. Such vibrations and load fluctuations could be as large as (and even greater than) the mean values for cases with unsteady cavitation, so dynamic and viscous fluidstructure models are needed to simulate flexible hydrofoils in cavitating flows. In general, the flow induced vibrations, and hence the drag force, are higher with decreasing stiffness. For small leading edge partial cavitation, increasing foil flexibility increases the maximum cavity length and reduces the cavity shedding frequency; however, the influence of foil flexibility is limited for cases where the maximum cavity length is near or beyond the foil trailing edge, because of the relocation of the center of pressure at the elastic axis, near the mid-chord. The results show that the mean deformations are generally limited by stall, and by the quasi-steady linear theory predictions at the fully-wetted and supercavitating limits. Furthermore, frequency focusing can occur when the cavity shedding frequency is near the fundamental system resonance frequencies, and broadening of the frequency spectrum can occur due to excitation of the sub-harmonics and/or modulation induced by the fluctuating cavities, if the cavity shedding frequency is away from the fundamental system resonance frequencies.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

High-speed and near-surface operations of lift or thrust providing devices (e.g. hydrofoils, turbine blades, propellers) in water make them prone to hydrodynamic cavitation, which can lead to vibration, noise, performance breakdown, and erosion if uncontrolled (Franc, 2006; Franc and Michel, 2005). Cavitation induced vibrations and load fluctuations can be more critical for such structures made of flexible materials, which have been shown to have performance advantages over

http://dx.doi.org/10.1016/j.jfluidstructs.2014.04.010 0889-9746/© 2014 Elsevier Ltd. All rights reserved.

Please cite this article as: Akcabay, D.T., Young, Y.L., Influence of cavitation on the hydroelastic stability of hydrofoils. Journal of Fluids and Structures (2014), http://dx.doi.org/10.1016/j.jfluidstructs.2014.04.010

^{*} Corresponding author. Tel.: +1 734 647 0249; fax: +1 734 936 8820. *E-mail address:* ylyoung@umich.edu (Y.L. Young).

п

 p_o

 p_v

Re

	D.T. Akcabay, Y.L. Young / Journa	
Nomenclature		
а	nondimensional distance (as a fraction of b) from the mid-chord position to the EA	
b	half chord length $(=c/2)$	
CFL	Courant-Friedrichs-Lewy number	
C_D	drag coefficient	
C_L	lift coefficient	
$C_L^{FW,t}$	theoretically predicted C_L in FW flow	
$C_{I}^{SC,t}$	theoretically predicted C_t in SC flow	
C_M	moment coefficient about the foil EA	
$C_{M}^{FW,t}$	Theoretically predicted C_M in FW flow	
C ^{SC,t}	theoretically predicted C _w in SC flow	
С _М Ĉ	hydrofoil damping constant for snapwice	
С _h	bending	
C_{θ}	hydrofoil damping constant for spanwise twisting (torsion)	
СР	center of pressure	
C ~	hydrofoil chord length	
D	net drag force on the hydrofoil	
D'	2-D (per unit span) net drag force on the hydrofoil	
DOF	degree of freedom	
Es	Young's modulus of the hydrofoil	
EA	elastic axis	
е	nondimensional distance (as a fraction of c) from the EA to the CP	
e ^{FW,t}	theoretically predicted <i>e</i> in FW flow	
$e^{SC,t}$	theoretically predicted <i>e</i> in SC flow	
FSI	fluid-structure interaction	
FVV	fully-wetted	
J	tion of the 3-D hydrofoil	
f_{ca}	cavity shedding frequency	
J_h	hydrofoil's first bending natural frequency in air	
Jh	in water	
fa	hydrofoil's first torsion natural frequency in air	
$f_{ heta}^{\nu}$	hydrofold's first torsion natural frequency in an	
g	normalized twisting deformation shape func-	
~	tion of the 3-D hydrofoil	
h	hydrofoil's bending displacement at EA	
h	time-dependent part of the hydrofoil bending displacement at the free-tip and at the EA	
h ^{FW,t}	theoretically predicted h in FW flow	
h ^{SC,t}	theoretically predicted <i>h</i> in SC flow	
\tilde{I}_{θ}	hydrofoil's 3-D generalized moment of inertia along the EA	
\tilde{K}_h	hydrofoil spanwise bending stiffness	
Ñθ	hydrofoil spanwise torsion stiffness	
\tilde{K}_{θ}^{Div}	critical \tilde{K}_{θ} at which the foil undergoes static divergence	
$\tilde{K}_{\theta}^{Sc,Div}$	\tilde{K}_{θ}^{Div} at SC conditions	

net lift force on the hydrofoil

hydrofoil's 3-D generalized mass

hydrofoil

leading edge

Loose Hybrid Coupled

2-D (per unit span) net lift force on the

 $\tilde{K}_{\theta}^{Sc,Div}$ Ĩ

Ľ

LE

ñ

LHC

SC	Supercavitating
S	hydrofoil span length
S _{ff}	$=\int_0^s f(z)^2 dz$
Sgg	$=\int_{0}^{s}g(z)^{2}dz$
Ť	net fluid-induced moment about the hydrofoil EA
Τ'	2-D fluid-induced moment (per unit span) about the hydrofoil EA
TE	trailing edge
TEV	trailing edge vortex
URANS	unsteady Reynolds Averaged Navier-Stokes equations
U_0	uniform inflow speed along X
U_0^{Div}	critical U_0 at which the foil undergoes static
	divergence
и	local velocity of the liquid/vapor mixture
	along the X direction
VOF	volume of the fluid method
(X,Y)	coordinate axis centered at the EA of the undeformed hydrofoil
(x_{θ}, y_{θ})	nondimensional distance (as a fraction of b)
	from the EA to foil center of mass position
	along X and Y .
y^+	$=\rho_l u_{\tau} y \mu_l$, where u_{τ} is the estimated friction
	velocity, y is the thickness of the first cell
	adjacent to the foil
Ζ	span length parameter, $(=0$ at the hydrofoil
	fixed end, $=s$ at the hydrofoil tip)
α_0	hydrofoil initial angle of attack
α_{eff}	hydrofoil effective angle of attack
α_{L0}	hydrofoil's angle of attack at which lift force is
	zero (Camber angle)
Δt	time-step size
ΔX	local mesh width size
ζh	damping factor for hydrofoil bending in air
ζ_{θ}	damping factor for hydrofoil torsion in air
$ ilde{ heta}$	hydrofoil's twist-angle displacement along the EA
θ	time-dependent part of the hydrofoil twist-angle
	displacement along the EA at the free-tip
$\theta^{FW,t}$	theoretically predicted θ in FW flow
$\theta^{SC,t}$	theoretically predicted θ in SC flow
μ_l	dynamic viscosity of the liquid
μ_v	dynamic viscosity of the vapor
μ_t	turbulent eddy viscosity of the liquid/vapor
*	turbulant addy viscosity of the liquid/vapor
μ_t	mixture
	Deiscon's ratio of the hydrofoil material
ν_{s}	density of the liquid
ρ_l	density of the hydrofoil material
ρ_s	density of the vapor
ρ_v	cavitation number
d d	local volume fraction of the vapor phase (-1)
Ψ	pure vapor, $=0$ pure liquid)

exponent used in the empirical relation

between $\mu *_t$ and μ_t static pressure at the outlet

Reynolds number

saturated vapor pressure

Download English Version:

https://daneshyari.com/en/article/7176102

Download Persian Version:

https://daneshyari.com/article/7176102

Daneshyari.com