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a b s t r a c t

The aeroelastic system of an airfoil-store configuration with a pitch freeplay is investi-
gated using the precise integration method (PIM). According to the piecewise feature, the
system is divided into three linear sub-systems. The sub-systems are separated by
switching points related to the freeplay nonlinearity. The PIM is then employed to solve
the sub-systems one by one. During the solution procedures, one challenge arises when
determining the vibration state passing the switching points. A predictor-corrector
algorithm is proposed based on the PIM to tackle this computational obstacle. Compared
with exact solutions, the PIM can provide solutions to the precision in the order of
magnitude of 10�12. Given the same step length, the PIM results are much more accurate
than those of the Runge–Kutta (RK) method. Moreover, the RK method might falsely track
limit cycle oscillations (LCOs), bifurcation charts or chaotic attractors; even the step length
is chosen much smaller than that for the PIM. Bifurcations and LCOs are obtained and
analyzed by the PIM in detail. Interestingly, it is found that multiple LCOs and chaotic
attractors can exist simultaneously. With this magnitude of precision and efficiency, the
PIM could become a solution technique with excellent potential for piecewise nonlinear
aeroelastic systems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The aeroelastic system of an airfoil is one of the typical self-excited oscillators. The airfoil may continue vibrating stably
or unstably by extracting energy from the wind. Due to the nonlinearities resulting from structural stiffness and/or
aerodynamics, flutter is usually characterized by motions with certain amplitudes, i.e., limit cycle oscillation (LCO). A LCO
can be classified as supercritical due to a supercritical Hopf bifurcation or as subcritical due to a subcritical bifurcation. One
category of research dealing with airfoil flutter was based on a so-called typical section with two-dimensional aerodynamics
(Lee et al., 1999a, 1999b; Coller and Chamara (2004)). This model usually has two structural degrees-of-freedom (dofs), i.e.,
the plunge and the pitch. In these studies, the subsonic aerodynamics acting on an airfoil was usually modeled by steady/
quasi-steady or unsteady flow, and the aerodynamics acting on the airfoil can be explicitly expressed. Another kind of
research focused on developing CFD/CSD coupling techniques to solve nonlinear flutter problems directly, in which the
aerodynamics are numerically computed coupled with structural motions (Hall et al., 2000; Thomas et al., 2004; Dowell and
Tang, 2002).
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Quantitative research on LCOs via analytical or semi-analytical techniques has been an active area for many years
(Lee et al., 1999a). Overall, there are two categories of solution approaches for the nonlinear equations. The time domain
method is to use integration techniques to generate transient responses numerically for a long time based on state space
equations, and then to extract a LCO solution in one approximate period when steady responses are reached. The other
approach is called the frequency domain method, which usually involves seeking a LCO solution using truncated Fourier
series with unknown coefficients.

Numerical techniques based on time domain analysis mainly include the finite difference scheme (Lee and LeBlanc,
1986), the Runge–Kutta (RK) integration method (Lee et al., 1998), and the cyclic method (Beran and Lucia, 2005). As exact
solutions are generally not evident, the RK method was widely applied as the benchmark for comparison. At the early stage,
the analytical or semi-analytical analysis was primarily based on the describing function technique, the harmonic balancing
technique (Lee et al., 1999a), etc. Lee et al. (1997) obtained a purely analytic solution of a nonlinear aeroelastic equation
subject to a sinusoidal external excitation. During the past decade, several methods were developed for nonlinear
aeroelastic analysis, such as the high dimensional harmonic balance method (Liu et al., 2007), the incremental harmonic
balance method (Chen et al., 2012a), the reduced cyclic method (Beran and Lucia, 2005), and the homotopy analysis method
(Chen and Liu, 2008), to mention a few.

Note that the above studies modeled the considered nonlinearities as continuous and smooth functions, usually as
lumped ones. In order to analyze discontinuous nonlinearities such as bilinear and piecewise stiffness, the point
transformation method (Liu et al., 2002) and the incremental-perturbation method (Chung et al., 2007, 2009) were developed,
respectively.

Generally speaking, there should be a criterion for judging whether the breathing crack opens or closes during numerical
simulations. The criterion will lead to an unavoidable switching point. It is worth noting that a troublesome problem in a
freeplay model lies in determining switching points (Lin and Cheng, 1993; Conner et al., 1997). Lin and Cheng (1993) found
that an entirely incorrect asymptotic behavior can occur due to an error in tracking the switching point in the RK method.
Significant discrepancies between the exact motion and the numerical solution may sometimes be observed. Though the
switching point can be approximated very accurately as the step length is chosen refined enough, the computational cost is
sometimes too high, even unacceptable under some working conditions such as real time structural health monitoring or
damage detection. Therefore, it is worth proposing some more efficient approaches to tackle this problem.

The precise integration method (PIM) was initiated by Zhong and Williams (1994) and Zhong (2004) two decades ago.
The most outstanding merit of PIM lies in its high precision and efficiency. Theoretically, it can even reach computer
precision with an acceptable amount of computational resources. It has been developed and applied in various problems
such as dynamical systems, wave propagation, optimal control, structural mechanics, electro-magnetic wave guide
problems (Wang, 2011), bio-medical engineering problems (Lin et al., 2013), and soil mechanics (Huang et al., 2007). It
can be applied not only to initial-valued problems but also to boundary-valued problems (Zhang and Huang, 2013).

Aeroelastic systems with a freeplay have stimulated the curiosity and interest of many aeroelasticians (Liu and Dowell,
2005; Marsden and Price, 2005; Firouz-Abadi et al., 2013; Li et al., 2012). As is well known, the PIM is very suitable for linear
initial-valued problems. We are motivated by its high precision and efficiency to apply this technique in an aeroelastic
system with a freeplay. In this study, we will propose an effective algorithm, based on the PIM, to precisely simulate the
nonlinear aeroelastic responses of an airfoil-store configuration with piecewise pitch stiffness.

2. Equations of motions

Fig. 1 shows the physical model of a two-dimensional airfoil with an external store. The airfoil oscillates in pitch and
plunge degrees-of-freedom (dofs). The pitch angle about the elastic axis (E), denoted by α, is positive with the nose up; the
plunge deflection denoted by h is positive in the downward direction. The external store is located at a distance Lb from the
mid-chord. Its motion is modeled as a varying pitch angle (β) about F, called the store dof. The span length of the airfoil is
assumed as a unit, the mid-chord length as b and the wind speed as V. The elastic axis is located at a distance ab from the
mid-chord, while the mass center (G) is located at a distance xαb from the elastic axis. The distance from the mass center of
the external store to the aerodynamic center is denoted as xβb. All the distances such as ab, xαb and xβb are positive when
measured towards the trailing edge of the airfoil.

Fig. 1. Sketch of an airfoil with an external store.
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