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a b s t r a c t

In this paper, we address experimentally and theoretically the non-linear effects on the
resonance of a periodically-forced cantilevered plate immersed in a fluid at rest.
Experiments are performed with small aspect-ratio plates made of two different
materials. When forced harmonically at their leading edges, these plates exhibit reso-
nances for their first 3 structural modes. The frequencies at these resonances decrease
when the forcing amplitude is increased, revealing the presence of non-linear effects.
To model this phenomenon, a theoretical model is employed, which takes into account
both resistive and reactive forces exerted by the fluid on the plate. By carrying out a
weakly non-linear analysis, the frequencies at the resonances can then be determined.
Model and experiments are in good agreement, showing that a weakly non-linear
approach is suited to this kind of fluid–structure interaction and could be applied, in
the future, to engineering problems such as energy harvesting with a fluttering plate or
the biological problem of aquatic propulsion with a flexible fin.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One of the most simple examples of fluid–structure interaction is the vibration of a cantilever plate in a fluid at rest. Yet,
even in this simple example, complex effects may arise and hinder the development of accurate modeling. First, it should be
realized that this fluid–structure interaction is strong in the sense that both the plate motion modifies the fluid flow around
it and the flow modifies the forces on the plate and thus its dynamics. If structural resonances can be generated in the plate,
fluid resonances can also occur, as well as fluid–structure ones (Crighton and Oswell, 1991; Shelley and Zhang, 2011).
Second, as soon as the beam deflection is of the order of its length, non-linear effects come into play. These non-linear
effects are mainly caused by geometrical effects (as the boundary conditions need to be evaluated on a displaced beam), but
may also be caused by non-linearities of the structural constitutive relation (e.g. plastic deformation) or the fluid (e.g. if
vorticity is detached). The objective of this paper is to study in an idealized system the weakly non-linear effects on the
resonance of a cantilever plate.

Every structure has resonant frequencies associated to its elastic and geometric characteristics. In some cases, the
resonant modes are excited on purpose, as for the two-stroke engine (Tenney, 1972; Blair, 1996), the string and wind
instruments (Fletcher and Rossing, 1998), radio antennas (Huang and Boyle, 2008), magnetic resonance imaging (Kuperman,
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2000) and atomic force microscopes (Sader, 1998; Blom et al., 1992; Ghatkesar et al., 2008). These resonances may also be
used to determine Young's modulus of a sample as it is done in a classical undergraduate experiment (Wilson and Lord,
1973; Turvey, 1990). In other cases, resonance is undesirable and may cause severe damages in architectural constructions,
rail transport, aeronautics, or in the automobile industry. In this case, the excitation may be due to instabilities of the fluid–
structure interactions such as flutter, galloping, or vortex-induced vibration (Dowell and Hall, 2001; Païdoussis, 1998, 2004).

When a plate vibrates, the forces that the fluid exerts on it can be decomposed into two components: reactive forces and
resistive forces. Reactive forces have an inviscid origin and have been modeled in the context of fish swimming by Lighthill
(1960, 1971) and recently revived by Candelier et al. (2011, 2013). Their origin is as follows: when a body immersed in a fluid
moves, a certain added-mass of fluid is also displaced; the acceleration of this added-mass implies that the body has exerted
a certain force on the fluid and that, reactively, the fluid has exerted the opposite force on the body. In the linear regime, or
equivalently for small-amplitude deformations, added-mass effects tend to decrease the resonance frequencies of a
structure compared to vibrations in vacuo, as they are equivalent to an increase in the structure mass (the resonant
frequencies being inversely proportional to the square root of this mass).

Resistive forces are due to viscous effects and, in particular, are present when boundary layers separate and vorticity is
detached. They result in drag forces that are, in the limit of large Reynolds numbers, proportional to the square of the
normal velocity (Taylor, 1952). Resistive forces, because of this quadratic dependence, are inherently non-linear. They can be
taken into account in a weakly non-linear model if some approximations are made (e.g. Lopes et al., 2002). It is usually
assumed that resistive and reactive forces can be considered separately and that the total force exerted by the fluid is a
linear superimposition of the two. Although this assumption could be disputed, we will proceed similarly in the present
analysis.

In this work, we will consider both reactive and resistive forces acting on a vibrating plate. Our goal is to assess the
importance of the first non-linear effects on the resonant frequencies. The theoretical model is adapted from a model
developed by Eloy et al. (2012) and will be introduced in Section 2. Then, the setup and the experimental results will be
presented in Section 3. Finally, a comparison between the two will be drawn in Section 4 before proposing a conclusion.

2. Model

2.1. Equation of motion

Consider a flexible rectangular plate of length L and width H clamped at one edge and free at the other (Fig. 1). When the
clamped edge is set in motion in the y-direction with angular frequency ω, the deformation of the plate is one-dimensional,
i.e. independent of the z-direction. In this case, its deflection can be described by the position vector xðs; tÞ ¼ ðx; yÞ, which is a
function of time and the curvilinear coordinate s measuring the distance from the clamped edge. This plate obeys the Euler–
Bernoulli beam equation

m∂2t xþD∂4s x�∂sð〈T〉∂sxÞþ〈p〉n̂ ¼ 0; ð1Þ

with m being the plate mass per unit area, D being the plate bending rigidity, and T being the generalized tension in the
plate, which originates from the inextensibility condition. The last term in Eq. (1) comes from pressure forces because of a
pressure jump pðs; z; tÞ across the plate due to the surrounding flow. Finally, the n̂ denotes the unit vector normal to the plate
and the brackets denote averaging in the z-direction along the plate width (Eloy et al., 2012). The equation of motion (1) is
supplemented by the clamped-free boundary conditions: y¼ ∂sy¼ 0 in s¼0, and ∂2s y¼ ∂3s y¼ T ¼ 0 in s¼L.

In the elongated body limit (i.e. H5L), pressure forces on the plate can be decomposed into two parts

〈p〉¼ preac:þpresis: ; ð2Þ

with preac: being the reactive force and presis: being the resistive force. The reactive force is physically due to the necessity for
the plate to accelerate a certain added mass of fluid when it is set in motion. To accelerate this mass of fluid, a force has to be
exerted on it, and reactively the opposite force is exerted on the plate (Lighthill, 1971). The resistive force is simply the drag
on the plate due to the crossflow component of the relative velocity between the plate and the fluid. These forces can be
written as

preac: ¼M _w� uwð Þ0 þ1
2w

2κ
� �

; ð3Þ

presis: ¼
1
2
ρCd w w;jj ð4Þ

where κ is the plate curvature, M¼ πρH=4 is the added mass of air per unit area, Cd is a drag coefficient taken to be Cd¼1.8
for a plate (Buchak et al., 2010), dots and primes denote differentiation with respect to t and s respectively, u and w are the
longitudinal and normal components of the plate velocity respectively such that _x ¼ ut̂þwn̂ and

u¼ _xx0 þ _yy0; w¼ � _xy0 þ _yx0: ð5Þ
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