Accepted Manuscript

Title: Influence of pulse energy on machining characteristics in laser induced plasma micro-machining

Authors: Xingsheng Wang, Chenbing Ma, Chengyu Li, Min Kang, Kornel Ehmann

PII: S0924-0136(18)30278-4

DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.031

Reference: PROTEC 15815

To appear in: Journal of Materials Processing Technology

Received date: 12-3-2018 Revised date: 14-6-2018 Accepted date: 19-6-2018

Please cite this article as: Wang X, Ma C, Li C, Kang M, Ehmann K, Influence of pulse energy on machining characteristics in laser induced plasma micro-machining, *Journal of Materials Processing Tech.* (2018), https://doi.org/10.1016/j.jmatprotec.2018.06.031

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of pulse energy on machining characteristics in laser induced plasma micro-machining

Xingsheng Wang^{1*}, Chenbing Ma¹, Chengyu Li¹, Min Kang¹, Kornel Ehmann²

¹ College of Engineering, Nanjing Agricultural University, 40 Dianjiangtai Road, Nanjing, Jiangsu 210031, P.R. China

²Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

* Corresponding author. Tel.: +86 13814176285

Email address: xingshengwang@njau.edu.cn (X. Wang)

ABSTRACT

This work investigates the influence of pulse energy on machining characteristics using a 10 picosecond laser during Laser induced plasma micromachining (LIPMM) process. An axisymmetric model combining the effects of cascade, multiphoton ionization, and recombination and diffusion losses was developed to simulate the spatial and temporal plasma profiles at various pulse energies in distilled water. Thereafter, micro-channels with the corresponding pulse energies were created on stainless steel using LIPMM, and the plasma focusing process, depth and width of the machined channels were investigated. It was found that pulse energy had a negligible effect on the variation of the focusing distance during the LIPMM focusing process. The simulations and experimental geometric features showed similar qualitative trends with the increasing pulse energy at the plasma's focal plane. However, the pulse energy had a significant influence on the machined depth, but a much lesser influence on the machined width.

1

Download English Version:

https://daneshyari.com/en/article/7176171

Download Persian Version:

https://daneshyari.com/article/7176171

<u>Daneshyari.com</u>