Accepted Manuscript

Title: Influence of Cu micro/nano-particles mixture and surface roughness on the shear strength of Cu-Cu joints

Authors: Yang Zuo, Jun Shen, Jiacheng Xie, Lu Xiang

PII: S0924-0136(18)30104-3

DOI: https://doi.org/10.1016/j.jmatprotec.2018.03.005

Reference: PROTEC 15675

To appear in: Journal of Materials Processing Technology

Received date: 21-12-2017 Revised date: 8-3-2018 Accepted date: 9-3-2018

Please cite this article as: Zuo Y, Shen J, Xie J, Xiang L, Influence of Cu micro/nano-particles mixture and surface roughness on the shear strength of Cu-Cu joints, *Journal of Materials Processing Technology* (2010), https://doi.org/10.1016/j.jmatprotec.2018.03.005

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Influence of Cu micro/nano-particles mixture and surface roughness on

the shear strength of Cu-Cu joints

Yang Zuo, Jun Shen*, Jiacheng Xie and Lu Xiang

State Key Laboratory of Mechanical Transmission, College of Material Science and Engineering,

Chongqing University, Chongqing, 400044, China

* Corresponding author: Tel: +86-13883111150; E-mail: shenjun@cqu.edu.cn (J.Shen)

Abstract:

With the optimal mass ratio (9/1) of 100 nm to 1 µm particles, the bonding layer showed a highly

dense sintering structure and was thinner than that of only 100 nm particles, the shear strength of the

Cu-Cu joint was over 20 MPa even at relatively low temperature 250 °C and pressure of 4 MPa. The

sawtooth structure formed between the bonding layer and the copper substrates can increase the

bonding area and further promote the shear strength of joint, the optimal surface roughness of copper

substrate for maximum enhanced effect was $Ra = 189.9 \pm 5.4$ nm.

Key words: Nanoparticles; Cu-Cu joints; Sintering; Bonding material; Low temperature soldering

1. Introduction

Three-dimensional integrated circuits (3D-IC) had risen in popularity as they provide high

packaging density and enhanced performance due to vertical stacking, as shown by Huang et al.

(2015). Low temperature bonding is critical in 3D-IC industry for meeting the requirements of low

cost and thermal budget. Cu-Cu bonding has attracted much attention due to its high electrical

conductivity and strong bonding strength. In order to achieve considerable bonding strength of

1

Download English Version:

https://daneshyari.com/en/article/7176378

Download Persian Version:

https://daneshyari.com/article/7176378

<u>Daneshyari.com</u>