Accepted Manuscript

Title: Influence of spatial tool inclination on delamination

when milling CFRP

Authors: Wolfgang Hintze, Felix Brügmann

PII: S0924-0136(17)30490-9

DOI: https://doi.org/10.1016/j.jmatprotec.2017.10.041

Reference: PROTEC 15461

To appear in: Journal of Materials Processing Technology

Received date: 26-6-2017 Revised date: 11-10-2017 Accepted date: 24-10-2017

Please cite this article as: Hintze, Wolfgang, Brügmann, Felix, Influence of spatial tool inclination on delamination when milling CFRP.Journal of Materials Processing Technology https://doi.org/10.1016/j.jmatprotec.2017.10.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Influence of spatial tool inclination on delamination when milling CFRP

Wolfgang Hintzea*, Felix Brügmanna

^aInstitute of Production Management and Technology, Hamburg University of

Technology, 21073 Hamburg, Germany, w.hintze@tuhh.de (corresponding author),

felix.bruegmann@tuhh.de

Abstract

When end milling long carbon-fibre-reinforced plastic (CFRP), delamination, mainly fibre

protrusions can occur at the top layers of the machined edges. It was observed that the

spatial inclination of the tool axis significantly influences delamination and has not yet

been investigated in detail. The fibre cutting angle used so far for the description of the

separation process only refers to the cutting velocity in the laminate plane.

The spatial position of the cutting edge and the effective velocity with respect to the fibre

axis of a unidirectional ply depend on the tool engagement angle and the inclination of

the tool axis. Hence, a three-dimensional description of the geometrical and kinematic

relationships has been established in this work for the first time. To determine the effect

on delamination the model is compared to milling experiments with various tool axis

inclinations towards and perpendicular to the feed direction, denoted by lead and tilt

angle.

The results show that fibre protrusions can be avoided if the cutting velocity is at least

partially directed into the laminate plane and if the cutting edge is located partially above

the fibre to be cut. The geometrical and kinematic model is applicable to any machining

operation, to materials with unidirectional fibre reinforcement and to non-crimped fabrics

with unidirectional top layers.

Keywords: CFRP; Milling; Delamination; Modeling

1

Download English Version:

https://daneshyari.com/en/article/7176596

Download Persian Version:

https://daneshyari.com/article/7176596

<u>Daneshyari.com</u>