Accepted Manuscript

Title: Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO₃ solution

Author: Dengyong Wang Zengwei Zhu Bin He Yongcheng

Ge Di Zhu

PII: S0924-0136(16)30299-0

DOI: http://dx.doi.org/doi:10.1016/j.jmatprotec.2016.08.023

Reference: PROTEC 14935

To appear in: Journal of Materials Processing Technology

Received date: 29-2-2016 Revised date: 9-8-2016 Accepted date: 24-8-2016

Please cite this article as: Wang, Dengyong, Zhu, Zengwei, He, Bin, Ge, Yongcheng, Zhu, Di, Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO3 solution. Journal of Materials Processing Technology http://dx.doi.org/10.1016/j.jmatprotec.2016.08.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Effect of the breakdown time of a passive film on the electrochemical machining of rotating cylindrical electrode in NaNO₃ solution

Author names

Dengyong Wang, a Zengwei Zhu, a,*Bin He, Yongcheng Ge, Di Zhu

Affiliations

Nanjing University of Aeronautics and Astronautics, Nanjing 210016, People's Republic of China.

*Corresponding author

Address: Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing 210016, People's Republic of China; E-mail: zhuzw@nuaa.edu.cn; Tel: +86 25 84896605; Fax: +86 25 84895912.

Abstract

In electrochemical machining (ECM), a passive film is generally present on the anode surface at low current density but is broken down at high current density in a passivating electrolyte. This film can impede unwanted metal dissolution in a low-current-density region and thereby improve the accuracy of ECM. However, it may sometimes affect metal dissolution at high current density. In this paper, the breakdown time of the passive film is determined for different current densities by varying the applied anodic potential pulses. It is found that the breakdown time has a significant magnitude of a few seconds, which can be long enough to affect metal dissolution in ECM.

To illustrate the effect of the breakdown time of a passive film, ECM tests with

Download English Version:

https://daneshyari.com/en/article/7176617

Download Persian Version:

https://daneshyari.com/article/7176617

Daneshyari.com